admin管理员组文章数量:1123270
We have data from multiple stations, and our goal is to perform non-stationary predictions from different time points scale parameters for each station using the GEV distribution. We are currently using the extRemes package's fevd() function, which works well for Maximum Likelihood Estimation (MLE), but we also want to perform the analysis using L-moments.
The code we wrote:
XX <- c(9.0, 8.4, 8.4, 6.4, 16.0, 10.0, 7.9, 4.2, 5.7, 9.4, 7.6, 6.3, 2.9, 9.8, 9.6, 7.0, 2.6, 2.3, 1.9, 9.7, 9.1, 10.1, 9.4, 8.2, 6.6, 10.4, 8.0, 8.5, 12.9, 8.5, 8.8, 12.0, 11.0, 7.6, 5.1, 15.3, 9.1, 9.6, 9.0, 14.9, 7.1, 6.7, 8.0, 5.3, 18.5, 10.5, 8.4, 10.7, 4.0, 6.9, 9.8, 9.0, 13.0, 6.2, 7.0, 7.6, 6.5, 9.0, 11.0, 9.3, 9.0, 10.0, 6.4, 9.8, 7.2, 8.8, 10.0, 5.8, 9.2, 9.6, 9.7, 4.6, 5.6, 7.0)
ti <- seq(1,length(XX),length = length(XX))
nsfitscale <- fevd(x = XX, method = "Lmoments",scale.fun=~ti)
rpnss <- return.level(nsfitscale, return.period = c(2, 5, 10, 25, 50, 100, 200, 500))
LisAKS[[j]]=matrix(rpnss,dim(df)[1],8)
LmeanAks[j,]=colMeans(LisAKS[[j]])
本文标签:
版权声明:本文标题:estimation - How to perform non-stationary prediction for multiple stations using GEV distribution with L-moments in R - Stack O 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.betaflare.com/web/1736561649a1944653.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论