admin管理员组文章数量:1415458
Assume I have data X with normal likelihood and Prior Mean C as Laplace prior as inputs to the model. For easier convergence, I multiply each observation of Data by C and then use Prior Mean 1. And I observe the results are the same exactly.
However, I am not able to visualize the posterior equations and how are they equal in both the cases and bring about the same results.
Case 1 Posterior:
\propto \exp\left(-\frac{(X - \theta)^2}{2\sigma^2} - \frac{|\theta - C|}{b}\right)
Case 2 Posterior:
\propto \exp\left(-\frac{(CX - \theta)^2}{2\sigma^2} - \frac{|\theta - 1|}{b}\right)
本文标签: Scaling Data and Prior in Bayesian while using ADVIStack Overflow
版权声明:本文标题:Scaling Data and Prior in Bayesian while using ADVI - Stack Overflow 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.betaflare.com/web/1745166580a2645717.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论