admin管理员组文章数量:1377546
I'm using an AE to compress an 58 dimensional data into 8 dimension. I have used the same architect of AE with different number of data points. All the data points are independent to each other and selected randomly for training and validation but the test dataset is fixed with 1000 data points.
input_dim = data.shape[1]
encoding_dim = 8
for i in [2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000, data.shape[0]]:
train_data, val_data = train_test_split(data[:i][:], test_size=0.20, random_state=42)
# Encoder
input_layer = Input(shape=(input_dim,))
encoder_hidden1 = (Dense(64, activation='relu')(input_layer))
encoder_hidden1 = Dropout(0.2)(encoder_hidden1)
encoder_hidden2 = (Dense(32, activation='relu')(encoder_hidden1))
encoder_hidden2 = BatchNormalization()(encoder_hidden2)
encoder_hidden3 = (Dense(16, activation='relu')(encoder_hidden2))
encoder_hidden3 = BatchNormalization()(encoder_hidden3)
encoder_hidden4 = (Dense(8, activation='relu')(encoder_hidden3))
encoded = Dense(encoding_dim, activation='sigmoid', activity_regularizer=regularizers.l1(1e-6))(encoder_hidden4)
# Decoder
decoder_hidden1 = (Dense(8, activation='relu')(encoded))
decoder_hidden1 = BatchNormalization()(decoder_hidden1)
decoder_hidden2 = Dense(16, activation='relu')(decoder_hidden1)
decoder_hidden2 = BatchNormalization()(decoder_hidden2)
decoder_hidden3 = Dense(32, activation='relu')(decoder_hidden2)
decoder_hidden3 = BatchNormalization()(decoder_hidden3)
decoder_hidden4 = (Dense(64, activation='relu')(decoder_hidden3))
decoded = Dense(input_dim, activation='sigmoid')(decoder_hidden4)
autoencoder = Model(input_layer, decoded)
autoencoderpile(optimizer=Nadam(learning_rate=0.001), loss='mse',
metrics=[keras.metrics.RootMeanSquaredError(), 'mae', frechet_distance, ks_distance])
lr_scheduler = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=20)
early_stopping = EarlyStopping(monitor='val_loss', patience=100, restore_best_weights=True)
history = autoencoder.fit(train_data, train_data,
epochs=5000, batch_size=64, shuffle=True,
validation_data=(val_data, val_data),
callbacks=[early_stopping, lr_scheduler])
encoder = Model(input_layer, encoded)
X_encoded = encoder.predict(test_data)
decoder_input = Input(shape=(encoding_dim,))
decoder_layer_1 = autoencoder.layers[-8] # Dense(8)
decoder_layer_2 = autoencoder.layers[-7] # BatchNormalization()
decoder_layer_3 = autoencoder.layers[-6] # Dense(16)
decoder_layer_4 = autoencoder.layers[-5] # BatchNormalization()
decoder_layer_5 = autoencoder.layers[-4] # Dense(32)
decoder_layer_6 = autoencoder.layers[-3] # BatchNormalization()
decoder_layer_7 = autoencoder.layers[-2] # Dense(64)
decoder_layer_8 = autoencoder.layers[-1] # Dense(input_dim)
decoder = Model(decoder_input,
decoder_layer_8(decoder_layer_7(decoder_layer_6(
decoder_layer_5(
decoder_layer_4(decoder_layer_3(decoder_layer_2(decoder_layer_1(decoder_input)))))))))
X_reconstructed = decoder.predict(X_encoded)
test_mse_, test_root_mean_squared_error_, test_mae_, test_fre_, test_kl_ = autoencoder.evaluate(test_data,
test_data)
test_mae.append(test_mae_)
test_root_mean_squared_error.append(test_root_mean_squared_error_)
test_mse.append(test_mse_)
test_fre.append(test_fre_)
test_kl.append(test_kl_)
I am attaching the error diagram for the references.
版权声明:本文标题:deep learning - AutoEncoder Reconstruction error is not decreasing while training data increse - Stack Overflow 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.betaflare.com/web/1744416255a2605208.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论