admin管理员组文章数量:1403226
I am facing a specific issue during image stitching. The stitching method provided by OpenCV doesn’t work properly in my case, likely due to insufficient overlap between the images.
To address this issue, I created a custom script to correctly position each tile, considering rotation and both horizontal (overlapX) and vertical (overlapY) overlaps. However, when merging these tiles, I encounter noticeable brightness differences, resulting in a visually inconsistent final image. I can provide the image tiles and the stitching script if needed.
Could anyone suggest how to adjust or harmonize the brightness of the images during this stitching process? Are there particular methods or techniques recommended within OpenCV?
I try this code but it seems not work : I get the same image
import os
import sys
import cv2
import numpy as np
import math
def main():
import cv2.detail
if len(sys.argv)<4:
print("Usage: python exposure_compensator_with_mask.py <inputDir> <overlapX> <overlapY>")
sys.exit(1)
inputDir = sys.argv[1]
overlapX = int(sys.argv[2])
overlapY = int(sys.argv[3])
if not os.path.isdir(inputDir):
print("Dossier introuvable:", inputDir)
sys.exit(1)
all_files = [f for f in os.listdir(inputDir) if f.lower().endswith(('.jpg','.jpeg','.png'))]
if not all_files:
print("Aucune image .jpg/.png trouvée")
sys.exit(1)
images = []
masks = []
corners= []
current_x=0
for f in all_files:
path = os.path.join(inputDir, f)
img = cv2.imread(path)
if img is None:
print("Impossible de lire:", path)
continue
h,w = img.shape[:2]
mask = np.zeros((h,w), dtype=np.uint8)
zoneW = max(0, w-overlapX)
zoneH = max(0, h-overlapY)
mask[0:zoneH, 0:zoneW] = 255
images.append(img)
masks.append(mask)
corners.append( (current_x, 0) )
current_x += (w - 1)
if not images:
sys.exit(0)
import cv2.detail
detail = cv2.detail
compensator = detail.ExposureCompensator_createDefault(detail.ExposureCompensator_GAIN)
compensator.feed(corners, images, masks)
for i in range(len(images)):
compensator.apply(i, corners[i], images[i], masks[i])
outDir = os.path.join(inputDir, "corrected")
os.makedirs(outDir, exist_ok=True)
for i,f in enumerate(all_files):
outPath = os.path.join(outDir, f)
cv2.imwrite(outPath, images[i])
print("Image corrigée =>", outPath)
print("Terminé.")
if __name__ == "__main__":
main()
EDIT : this is the script to stitch images. to use it :
npm i sharp
node mosaic_serpentin_rotate.js ./vignettes out-s.png 680 440 0 60 1.7
File mosaic_serpentin_rotate.js
const fs = require('fs');
const path = require('path');
const sharp = require('sharp');
// Regex pour reconnaître 123456789-a-[x]-[y].jpg
const regex = /^123456789-a-(\d+)-(\d+)\.(jpg|jpeg|png)$/i;
// Récupération des arguments
const [,, inputDir, outputFile, overlapXArg, overlapYArg, offsetXArg, offsetYArg, rotateArg] = process.argv;
const overlapX = overlapXArg ? parseInt(overlapXArg, 10) : 50;
const overlapY = overlapYArg ? parseInt(overlapYArg, 10) : 50;
const offsetX = offsetXArg ? parseInt(offsetXArg, 10) : 0;
const offsetY = offsetYArg ? parseInt(offsetYArg, 10) : 0;
const rotateAngle = rotateArg ? parseFloat(rotateArg) : 0; // en degrés
async function main() {
if (!inputDir || !outputFile) {
console.error('Usage: node mosaic_serpentin_rotate.js <dir> <out.png> [overlapX=50] [overlapY=50] [offsetX=0] [offsetY=0] [rotateAngle=0]');
process.exit(1);
}
// 1) Grouper par colonne x => columns[x] = [{y, file}, ...]
const columns = {};
const files = fs.readdirSync(inputDir);
for (const f of files) {
const m = f.match(regex);
if (m) {
const x = parseInt(m[1], 10);
const y = parseInt(m[2], 10);
if (!columns[x]) columns[x] = [];
columns[x].push({ y, file: f });
}
}
// Tri des colonnes
const allXs = Object.keys(columns).map(Number).sort((a,b)=>a-b);
if (!allXs.length) {
console.error('Aucune image détectée selon la regex 123456789-a-[x]-[y].jpg');
process.exit(1);
}
// 2) Lire dimension tile (exemple => 1er fichier de la 1re col)
const firstFile = columns[allXs[0]][0].file;
let meta;
try {
meta = await sharp(path.join(inputDir, firstFile)).metadata();
} catch (err) {
console.error('Erreur lecture image exemple:', err);
process.exit(1);
}
const tileW = meta.width;
const tileH = meta.height;
// 3) Calculer dimension finale approximative
const numCols = allXs.length;
const maxTilesInACol = Math.max(...Object.values(columns).map(arr => arr.length));
const finalWidth = tileW + (numCols - 1)*(tileW - overlapX + offsetX);
//const finalHeight = tileH + (maxTilesInACol - 1)*(tileH - overlapY + offsetY);
const finalHeight = tileH + (maxTilesInACol - 1)*(tileH - overlapY);
console.log(`Tiles = ${tileW}x${tileH}, final ~ ${finalWidth} x ${finalHeight}`);
console.log(`overlapX=${overlapX}, overlapY=${overlapY}, offsetX=${offsetX}, offsetY=${offsetY}, rotateAngle=${rotateAngle}`);
// 4) Construire la liste de composite => rotation + position
const tasks = [];
// On parcourt chaque colonne x dans l'ordre
for (let i = 0; i < numCols; i++) {
const xVal = allXs[i];
let colArr = columns[xVal];
// Si xVal est pair => y asc, sinon y desc
// => serpentin vertical
if (xVal % 2 === 0) {
colArr.sort((a,b) => a.y - b.y);
} else {
colArr.sort((a,b) => b.y - a.y);
}
// posX
const baseX = i * (tileW - overlapX);
// Parcourir chaque tuile de la colonne, dans l'ordre imposé ci-dessus
for (let idx = 0; idx < colArr.length; idx++) {
const { y, file } = colArr[idx];
const fpath = path.join(inputDir, file);
// index => 0.. => position verticale
//const posY = idx * (tileH - overlapY) - offsetY * idx;
//const posY = (finalHeight - tileH) - idx * (tileH + overlapY + offsetY);
let posY = (finalHeight - tileH) - y * (tileH - overlapY);
if (xVal % 2 !== 0)
posY = idx * (tileH - overlapY);
if (xVal % 2 === 0)
posY+=offsetY/2;
else
posY-=offsetY/2;
if (xVal % 2 === 0 && y==0)
posY-=offsetY;
if (xVal % 2 !== 0 && y==colArr.length-1)
posY+=offsetY;
// Charger + pivoter => renvoyer un buffer => ensemble posite
const p = sharp(fpath)
.rotate(rotateAngle, { background: { r:0, g:0, b:0, alpha:0 } })
.png() // RGBA
.toBuffer()
.then(buf => ({
input: buf,
left: baseX - offsetX * y,
top: posY,
blend: 'over'
}));
tasks.push(p);
}
}
let compositeLayers;
try {
compositeLayers = await Promise.all(tasks);
} catch (err) {
console.error('Erreur lors de la rotation:', err);
process.exit(1);
}
// 5) Créer le canevas => RGBA
// => Sortie en PNG => conservez la transparence si tuiles pivotées + trous
try {
await sharp({
create: {
width: finalWidth,
height: finalHeight,
channels: 4,
background: { r:0, g:0, b:0, alpha:0 }
}
})
posite(compositeLayers)
.png()
.toFile(outputFile);
console.log(`Assemblage terminé => ${outputFile}`);
} catch (err) {
console.error('Erreur finale composite:', err);
}
}
main().catch(err => {
console.error('Erreur inattendue:', err);
});
本文标签: pythonBrightness differences in stitchingStack Overflow
版权声明:本文标题:python - Brightness differences in stitching - Stack Overflow 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.betaflare.com/web/1744398479a2604342.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论