admin管理员组文章数量:1353186
I have a lane detection model based on the ENet architecture. I converted it to a TFLite model. Before sending an image to the model, I need to pass it through a resize operation, reducing it to (80, 160, 3). However, the OpenCV resize operations in Python (running on a PC) and Android (using Dart FFI with OpenCV2) produce incorrect and inconsistent results. While imread reads the image as uint8, the resized values differ significantly between the PC and Android implementations.
dart/opencv.cpp file:
float* resizeAndConvertToFloat32(char* inputImagePath, int* outSize) {
Mat img = imread(inputImagePath);
if(img.empty()) {
platform_log("Error: Image could not be read");
*outSize = 0;
return nullptr;
}
cvtColor(img, img, COLOR_BGR2RGB);
Mat resizedImg;
resize(img, resizedImg, Size(160, 80), 0, 0, INTER_LINEAR);
Mat floatImg;
resizedImg.convertTo(floatImg, CV_32F);
int totalSize = floatImg.rows * floatImg.cols * floatImg.channels();
*outSize = totalSize;
float* result = (float*)malloc(totalSize * sizeof(float));
if(floatImg.isContinuous()) {
memcpy(result, floatImg.data, totalSize * sizeof(float));
} else {
int rowSize = floatImg.cols * floatImg.channels();
for(int i = 0; i < floatImg.rows; i++) {
memcpy(result + i * rowSize, floatImg.ptr<float>(i), rowSize * sizeof(float));
}
}
platform_log("Image resized to 160x80x3 and converted to float32 with preserve_range=True. Total elements: %d", totalSize);
return result;
}
python file:
import numpy as np
import cv2
import tensorflow as tf
from skimage.transform import resize
def load_tflite_model(model_path):
interpreter = tf.lite.Interpreter("/content/enet_model.tflite")
interpreter.allocate_tensors()
print("Loaded TensorFlow Lite model successfully.")
return interpreter
def predict_tflite(interpreter, input_data):
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
print("Input data:", input_data)
#print("Input type:", type(input_data))
#print("Input shape:", input_data.shape)
#print("---------------------------------")
#print("Input details:", input_details)
#print("Output details:", output_details)
#print("Quantization Scale:", input_details[0]['quantization'])
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
output_data = interpreter.get_tensor(output_details[0]['index'])*255
#print("Model prediction completed. Output shape:", output_data.shape)
#print(output_data)
return output_data
def road_lines(image, interpreter, lanes):
h, w = image.shape[:2]
image = image.copy()
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
small_img = resize(image, (80, 160), preserve_range=True)
small_img = np.array(small_img, dtype=np.float32)
small_img = small_img[None, :, :, :]
# print("small image", small_img)
#print("Resized image for model input:", small_img.shape)
prediction = predict_tflite(interpreter, small_img)[0]
lanes.recent_fit.append(prediction)
if len(lanes.recent_fit) > 5:
lanes.recent_fit = lanes.recent_fit[1:]
lanes.avg_fit = np.mean(np.array(lanes.recent_fit), axis=0)
#print("lanes recent fit:", lanes.recent_fit)
#print("lanes recent fit,shape:", type(lanes.recent_fit))
print("-------------------------------------------------")
# print("lanes avg fit:", lanes.avg_fit[75])
# print("lanes avg fit,shape:", type(lanes.avg_fit))
print("-------------------------------------------------")
lane_avg_uint8 = np.clip(lanes.avg_fit, 0, 255).astype(np.uint8)
#print("lane uin8", lane_avg_uint8[75])
# print("lane uin8,shape", lane_avg_uint8.shape)
#print("lane uin8,type", type(lane_avg_uint8.shape[0]))
# print("lane uint8 y", lane_avg_uint8[75])
# print("type", type(lane_avg_uint8[75]))
left_boundary = []
right_boundary = []
threshold_boundary = 128
for y in range(lane_avg_uint8.shape[0]):
row = lane_avg_uint8[y]
indices = np.where(row > threshold_boundary)[0]
if indices.size > 0:
left_boundary.append((indices[0], y))
right_boundary.append((indices[-1], y))
print("left boundary", left_boundary)
print("right boundary", right_boundary)
scale_x = w / 160.0
scale_y = h / 80.0
left_boundary_scaled = [(int(x * scale_x), int(y * scale_y)) for (x, y) in left_boundary]
right_boundary_scaled = [(int(x * scale_x), int(y * scale_y)) for (x, y) in right_boundary]
print("left boundary scaled", left_boundary_scaled)
print("right boundary scaled", right_boundary_scaled)
if len(left_boundary_scaled) > 1:
cv2.polylines(image, [np.array(left_boundary_scaled, dtype=np.int32)],
isClosed=False, color=(0, 255, 0), thickness=5)
if len(right_boundary_scaled) > 1:
cv2.polylines(image, [np.array(right_boundary_scaled, dtype=np.int32)],
isClosed=False, color=(0, 255, 0), thickness=5)
left_bottom = left_boundary_scaled[-1] if left_boundary_scaled else None
right_bottom = right_boundary_scaled[-1] if right_boundary_scaled else None
print("Lane detection completed.")
return image
Model input: (1,80,160,3) Model output: (1,80,160,1)
I realized that the resize operation used in Python is from skimage. I read that their interpolation methods might be different, so I made them the same. I also read that Python reads images in BGR format, while OpenCV reads them in RGB, so I ensured they were the same. However, none of these changes worked.
In short, I believe I have tried all possible solutions, but I still haven't gotten the expected result. There is no issue with the reading process; both methods read the image the same way. However, there is a significant difference in the output of the resize operation.
dart/ffi.dart:
import 'dart:ffi';
import 'dart:typed_data';
import 'package:ffi/ffi.dart';
import 'dart:io' show Platform, File;
import 'package:tflite_flutter/tflite_flutter.dart';
class OpenCVProcessor {
late final DynamicLibrary _nativeLib;
late final Pointer<Float> Function(Pointer<Utf8>, Pointer<Int32>)
_resizeAndConvert;
late final void Function(Pointer<Float>) _freeFloatArray;
static final OpenCVProcessor _instance = OpenCVProcessor._internal();
factory OpenCVProcessor() {
return _instance;
}
OpenCVProcessor._internal() {
_loadLibrary();
}
void _loadLibrary() {
_nativeLib = Platform.isAndroid
? DynamicLibrary.open('libmy_functions.so')
: DynamicLibrary.process();
_resizeAndConvert = _nativeLib
.lookup<
NativeFunction<
Pointer<Float> Function(Pointer<Utf8>,
Pointer<Int32>)>>('resizeAndConvertToFloat32')
.asFunction<Pointer<Float> Function(Pointer<Utf8>, Pointer<Int32>)>();
_freeFloatArray = _nativeLib
.lookup<NativeFunction<Void Function(Pointer<Float>)>>('freeFloatArray')
.asFunction<void Function(Pointer<Float>)>();
}
Future<Float32List?> processImage(String imagePath) async {
final imagePathPointer = imagePath.toNativeUtf8();
final outSizePointer = calloc<Int32>();
try {
final resultPointer = _resizeAndConvert(imagePathPointer, outSizePointer);
if (resultPointer == nullptr || outSizePointer.value <= 0) {
print('Resim işleme hatası: Boş veri döndü');
return null;
}
final totalElements = outSizePointer.value;
print('Toplam eleman sayısı: $totalElements');
final list = resultPointer.asTypedList(totalElements);
_freeFloatArray(resultPointer);
return list;
} catch (e) {
print('Resim işleme hatası: $e');
return null;
} finally {
calloc.free(imagePathPointer);
calloc.free(outSizePointer);
}
}
Future<List?> imageFileToFloat32List2(File imageFile) async {
final float32List = await processImage(imageFile.path);
if (float32List == null) {
return null;
}
return float32List.reshape([ 80, 160, 3]);
}
}
本文标签: Android Image Resizing Works Differently Than in PythonStack Overflow
版权声明:本文标题:Android Image Resizing Works Differently Than in Python - Stack Overflow 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.betaflare.com/web/1743923120a2562462.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论