admin管理员组文章数量:1346317
I'm using PyTorch Geometric and have a custom Torus class (a subclass of Data) that conditionally initializes attributes such as edge_index, edge_attr, and pos only when no_fixed is False. For example:
class Torus(Data):
def __init__(self, N: int = 64, L: float = 64.0, M: int = 64,
x: torch.Tensor = None, y: torch.Tensor = None,
eight_neighbors: bool = False, device=None, no_fixed: bool = False):
if no_fixed:
super().__init__(x=x, y=y)
else:
pos = grid_pos(N, L, device)
edge_index, edge_attr = torus_edges(N, L, pos, eight_neighbors, device)
super().__init__(x=x, y=y, edge_index=edge_index, edge_attr=edge_attr, pos=pos)
self.N = torch.tensor(N, dtype=torch.long).unsqueeze(0)
self.L = torch.tensor(L, dtype=torch.float).unsqueeze(0)
self.M = torch.tensor(M, dtype=torch.long).unsqueeze(0)
self.eight_neighbors = torch.tensor(eight_neighbors, dtype=torch.int).unsqueeze(0)
When I create individual Torus objects with no_fixed=True, they do not have the edge_index, edge_attr, or pos attributes. However, if I batch them using:
batch = Batch.from_data_list(torus_list)
the resulting batch unexpectedly contains edge_index, edge_attr, and pos (with shapes like [128^2, ...] etc).
Why does the batching process add these attributes to the batch even though none of the individual objects have them? Is this expected behavior due to how PyG’s Batch class works?
Any insights would be appreciated!
本文标签:
版权声明:本文标题:pytorch - Why does torch_geometric.Batch add edge_index, edge_attr and pos to my custom Data even when not set? - Stack Overflow 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.betaflare.com/web/1743829007a2546176.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论