admin管理员组文章数量:1345469
Consider the following dataframe example:
maturity_date simulation simulated_price realized_price
30/06/2010 1 0.539333333 0.611
30/06/2010 2 0.544 0.611
30/06/2010 3 0.789666667 0.611
30/06/2010 4 0.190333333 0.611
30/06/2010 5 0.413666667 0.611
Apart from setting aside the value of the last column and concatenating, is there any other way to adjust the dataframe such that the last column becomes row?
Here is the desired output:
maturity_date simulation simulated_price
30/06/2010 1 0.539333333
30/06/2010 2 0.544
30/06/2010 3 0.789666667
30/06/2010 4 0.190333333
30/06/2010 5 0.413666667
30/06/2010 realized_price 0.611
Consider the following dataframe example:
maturity_date simulation simulated_price realized_price
30/06/2010 1 0.539333333 0.611
30/06/2010 2 0.544 0.611
30/06/2010 3 0.789666667 0.611
30/06/2010 4 0.190333333 0.611
30/06/2010 5 0.413666667 0.611
Apart from setting aside the value of the last column and concatenating, is there any other way to adjust the dataframe such that the last column becomes row?
Here is the desired output:
maturity_date simulation simulated_price
30/06/2010 1 0.539333333
30/06/2010 2 0.544
30/06/2010 3 0.789666667
30/06/2010 4 0.190333333
30/06/2010 5 0.413666667
30/06/2010 realized_price 0.611
Share
Improve this question
asked yesterday
Whitebeard13Whitebeard13
4692 gold badges8 silver badges20 bronze badges
1 Answer
Reset to default 2Maybe easier is processing dictionary from last row, DataFrame.pop
trick is for remove original column realized_price
:
d = df.iloc[-1].to_dict()
d['simulated_price'] = d.pop('realized_price')
d['simulation'] = 'realized_price'
df.loc[len(df.pop('realized_price'))] = d
Alternative:
last = df.columns[-1]
d = df.iloc[-1].to_dict()
d['simulated_price'] = d.pop(last)
d['simulation'] = last
df.loc[len(df.pop(last))] = d
print (df)
maturity_date simulation simulated_price
0 30/06/2010 1 0.539333
1 30/06/2010 2 0.544000
2 30/06/2010 3 0.789667
3 30/06/2010 4 0.190333
4 30/06/2010 5 0.413667
5 30/06/2010 realized_price 0.611000
Another idea is use DataFrame.loc
for set new row with default index of DataFrame by select last row in DataFrame.iloc
, rename
and reappend simulation
with new value realized_price
in Series.reindex
:
s = (df.iloc[-1].drop(['simulated_price','simulation'])
.rename({'realized_price':'simulated_price'})
.reindex(df.columns[:-1], fill_value='realized_price'))
df.loc[len(df.pop('realized_price'))] = s
print (df)
maturity_date simulation simulated_price
0 30/06/2010 1 0.539333
1 30/06/2010 2 0.544000
2 30/06/2010 3 0.789667
3 30/06/2010 4 0.190333
4 30/06/2010 5 0.413667
5 30/06/2010 realized_price 0.611000
Alternative is first reassign column simulation
, then get last row and processing Series
:
s = (df.assign(simulation='realized_price')
.iloc[-1]
.drop(['simulated_price'])
.rename({'realized_price':'simulated_price'}))
df.loc[len(df.pop('realized_price'))] = s
print (df)
maturity_date simulation simulated_price
0 30/06/2010 1 0.539333
1 30/06/2010 2 0.544000
2 30/06/2010 3 0.789667
3 30/06/2010 4 0.190333
4 30/06/2010 5 0.413667
5 30/06/2010 realized_price 0.611000
Another idea with concat
:
out = (pd.concat([df,
df.iloc[[-1]]
.assign(simulation='realized_price',
simulated_price=df['realized_price'].iat[0])],
ignore_index=True)
.drop('realized_price', axis=1))
print (out)
maturity_date simulation simulated_price
0 30/06/2010 1 0.539333
1 30/06/2010 2 0.544000
2 30/06/2010 3 0.789667
3 30/06/2010 4 0.190333
4 30/06/2010 5 0.413667
5 30/06/2010 realized_price 0.611000
本文标签: Convert a column containing a single value to row in python pandasStack Overflow
版权声明:本文标题:Convert a column containing a single value to row in python pandas - Stack Overflow 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.betaflare.com/web/1743783690a2538295.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论