admin管理员组文章数量:1345700
I'm trying to generate an acceleration spectrogram from data stored in InfluxDB. The challenge is that the spectrograms in Grafana are not rendered correctly due to the way InfluxDB handles tags. My boss mentioned that this issue cannot be fixed in Grafana and suggested using another visualization library like Plotly.
The image of Grafana Spectogram broken:
My dataset is provided as a DataFrame with the following columns:
time(2m)
: Timestamp of the measurement.
max_value
: Amplitude or signal value.
frequency
: A tag from InfluxDB (string) used to filter and ensure all frequency streams are present.
max_frequency_value
: A float representing the numeric value of the frequency, which is essential for correctly ordering the data.
And here we have an example of the dataframe:
max_value max_frequency_value fill frequency time(2m)
2025-04-01 13:38:24.510491001+00:00 3.524501e-06 0.00000 0.0
2025-04-01 13:38:24.510491001+00:00 1.616359e-09 10058.59375 10058.593749999998
2025-04-01 13:38:24.510491001+00:00 1.890132e-09 10156.25000 10156.249999999998
2025-04-01 13:38:24.510491001+00:00 1.291029e-09 10253.90625 10253.906249999998
2025-04-01 13:38:24.510491001+00:00 1.067521e-09 10351.56250 10351.562499999998
... ... ... ... ... ...
2025-04-01 13:38:24.510491001+00:00 2.739630e-05 97.65625 97.65624999999999
2025-04-01 13:38:24.510491001+00:00 2.044526e-09 976.56250 976.5624999999999
2025-04-01 13:38:24.510491001+00:00 2.568848e-09 9765.62500 9765.624999999998
2025-04-01 13:38:24.510491001+00:00 1.435887e-09 9863.28125 9863.281249999998
2025-04-01 13:38:24.510491001+00:00 1.607229e-09 9960.93750 9960.937499999998
[129 rows x 5 columns]
I need to use both the frequency
tag (string) for filtering and the max_frequency_value
(float) to order the frequency streams properly.
Here's an example of what I've tried using Plotly:
def plot_spectrogram_from_df(df, output_file='spectrogram.png'):
"""
Generates and saves an acceleration spectrogram from a DataFrame containing:
- 'time(2m)': Timestamp.
- 'max_value': Signal amplitude.
- 'frequency': Frequency tag (string) from InfluxDB.
- 'max_frequency_value': Numeric value (float) of the frequency.
The function uses the frequency tag for filtering and the frequency_value to order the streams correctly.
"""
# Create a copy of the DataFrame and rename columns for convenience
df_plot = df.copy().rename(columns={
'time(2m)': 'time',
'max_value': 'amplitude',
'frequency': 'freq_tag',
'max_frequency_value': 'freq_val'
})
# Convert time column to datetime
df_plot['time'] = pd.to_datetime(df_plot['time'])
# Create a mapping from the frequency tag to its numeric value
freq_mapping = df_plot.drop_duplicates('freq_tag').set_index('freq_tag')['freq_val']
# Pivot the DataFrame: rows = time, columns = frequency tag, values = amplitude
pivot_df = df_plot.pivot_table(index='time', columns='freq_tag', values='amplitude', aggfunc='mean')
# Sort the frequency tags based on the numeric frequency value
sorted_tags = sorted(pivot_df.columns, key=lambda tag: freq_mapping[tag])
pivot_df = pivot_df[sorted_tags]
fig = go.Figure(data=go.Heatmap(
x=pivot_df.index,
y=[freq_mapping[tag] for tag in sorted_tags],
z=pivot_df.T.values, # Transpose so each row corresponds to a frequency
colorscale='Viridis'
))
fig.update_layout(
title='Acceleration Spectrogram',
xaxis_title='Time',
yaxis_title='Frequency'
)
fig.write_image(output_file)
Despite this approach, the resulting spectrogram does not accurately reflect the distribution of frequencies and amplitudes over time.
How can I improve the data processing or visualization to generate an accurate acceleration spectrogram?
Any advice or suggestions would be greatly appreciated. Thanks in advance!
I attempted to pivot the DataFrame so that time becomes the x-axis and the frequency (ordered by its numeric value) becomes the y-axis, using the amplitude values to generate a heatmap with Plotly. The approach was to use the InfluxDB frequency
tag for filtering and max_frequency_value
(float) for proper ordering.
I was expecting to see a clear acceleration spectrogram where each frequency stream is correctly placed on the y-axis and the time evolution of the amplitude is shown in color intensity. Instead, the resulting plot didn't accurately reflect the data distribution as seen in Grafana, which indicates that something might be off in how the data is aggregated or visualized.
本文标签: pythonHow to generate an acceleration spectrogram using Plotly from InfluxDB dataStack Overflow
版权声明:本文标题:python - How to generate an acceleration spectrogram using Plotly from InfluxDB data - Stack Overflow 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.betaflare.com/web/1743768237a2535639.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论