admin管理员组文章数量:1334199
During solving Excel BI challenge
I used Table.UnpivotOtherColumns(Source, {}, "Attribute", "Value"). And this gave me an output:
Next I was trying to solve the same challenge in polars and I used unpivot expression:
import polars as pl,datetime
dc={'Hall': ['Hall1', 'Hall1', 'Hall2', 'Hall2'],
'Date': [datetime.date(2023, 2, 1),
datetime.date(2023, 2, 2),
datetime.date(2023, 2, 1),
datetime.date(2023, 2, 4)],
'Guest1': ['A', 'X', 'R', 'S'],
'Guest2': ['B', 'Y', None, 'P'],
'Guest3': [None, 'Z', None, None],
'Guest4': [None, 'Q', None, None]}
df=pl.from_dict(dc).unpivot()
df
and this gave me output:
Is it possible to unpivot table with polars the same way as in power query ? I was thinking about iterating through each row and unpivoting each row separately and combining rows w hatack. But will it be efficient? I also checked pandas behavior and it works the same. Thanks in advance for any explanation. Artur
During solving Excel BI challenge
I used Table.UnpivotOtherColumns(Source, {}, "Attribute", "Value"). And this gave me an output:
Next I was trying to solve the same challenge in polars and I used unpivot expression:
import polars as pl,datetime
dc={'Hall': ['Hall1', 'Hall1', 'Hall2', 'Hall2'],
'Date': [datetime.date(2023, 2, 1),
datetime.date(2023, 2, 2),
datetime.date(2023, 2, 1),
datetime.date(2023, 2, 4)],
'Guest1': ['A', 'X', 'R', 'S'],
'Guest2': ['B', 'Y', None, 'P'],
'Guest3': [None, 'Z', None, None],
'Guest4': [None, 'Q', None, None]}
df=pl.from_dict(dc).unpivot()
df
and this gave me output:
Is it possible to unpivot table with polars the same way as in power query ? I was thinking about iterating through each row and unpivoting each row separately and combining rows w hatack. But will it be efficient? I also checked pandas behavior and it works the same. Thanks in advance for any explanation. Artur
Share Improve this question edited Dec 10, 2024 at 11:40 jqurious 21.7k5 gold badges20 silver badges39 bronze badges asked Nov 20, 2024 at 19:22 ArtupArtup 798 bronze badges1 Answer
Reset to default 1If I understand your problem correctly your issue is only with the final ordering of the rows in the final dataframe, you can add an index to sort with by adding a row index column and unpivoting on this column, then sorting by the index and removing the column afterward so it matches the desired dataframe. Just changing your last line of code:
import polars as pl,datetime
dc={'Hall': ['Hall1', 'Hall1', 'Hall2', 'Hall2'],
'Date': [datetime.date(2023, 2, 1),
datetime.date(2023, 2, 2),
datetime.date(2023, 2, 1),
datetime.date(2023, 2, 4)],
'Guest1': ['A', 'X', 'R', 'S'],
'Guest2': ['B', 'Y', None, 'P'],
'Guest3': [None, 'Z', None, None],
'Guest4': [None, 'Q', None, None]}
df=pl.from_dict(dc).with_row_index().unpivot(index = ["index"], variable_name = "Attribute").drop_nulls().sort("index").drop("index")
df
produces the following dataframe
本文标签: pythonpolars unpivot columns then rowsStack Overflow
版权声明:本文标题:python - polars unpivot columns then rows - Stack Overflow 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.betaflare.com/web/1742335118a2455470.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论