admin管理员组文章数量:1334929
As described, I can't pass a large dataframe into the sub-process when using the python standard library multiprocessing, or the concurrent.futures library.
Python version: 3.11.8 system: windows 11 23H2
Error: assert left > 0. OS Error: parameter is wrong.
Here is an example code:
import pandas as pd
import numpy as np
def calc_sth(big_df):
result = [1]
print("start subprocess")
return result
def multi_call():
big_df = pd.DataFrame(np.random.rand(1000000,1000))
result_list = []
with ProcessPoolExecutor() as executor:
with tqdm(total=10) as pbar:
for i in range(5):
future = executor.submit(calc_sth, big_df)
future.add_done_callback(lambda p: pbar.update(1))
result_list.append(future)
res = []
for r in result_list:
res.append(r.result())
return res
if __name__ == '__main__':
res = multi_call()
print(res)
and here is the error and traceback:
Traceback (most recent call last):
Traceback (most recent call last):
File "d:\python\Lib\multiprocessing\queues.py", line 246, in _feed
send_bytes(obj)
File "d:\python\Lib\multiprocessing\connection.py", line 200, in send_bytes
self._send_bytes(m[offset:offset + size])
File "d:\python\Lib\multiprocessing\connection.py", line 289, in _send_bytes
ov, err = _winapi.WriteFile(self._handle, buf, overlapped=True)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
OSError: [WinError 87] 参数错误。
File "d:\python\Lib\multiprocessing\process.py", line 314, in _bootstrap
self.run()
File "d:\python\Lib\multiprocessing\process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "d:\python\Lib\concurrent\futures\process.py", line 249, in _process_worker
call_item = call_queue.get(block=True)
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "d:\python\Lib\multiprocessing\queues.py", line 103, in get
res = self._recv_bytes()
^^^^^^^^^^^^^^^^^^
File "d:\python\Lib\multiprocessing\connection.py", line 216, in recv_bytes
buf = self._recv_bytes(maxlength)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "d:\python\Lib\multiprocessing\connection.py", line 334, in _recv_bytes
return self._get_more_data(ov, maxsize)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "d:\python\Lib\multiprocessing\connection.py", line 353, in _get_more_data
assert left > 0
^^^^^^^^
AssertionError
10%|████████████████████▊ | 1/10 [00:06<00:55, 6.17s/it]Traceback (most recent call last):
20%|█████████████████████████████████████████▌ | 2/10 [00:06<00:24, 3.09s/it] File "d:\python\Lib\multiprocessing\queues.py", line 246, in _feed
File "d:\python\Lib\multiprocessing\queues.py", line 246, in _feed
send_bytes(obj)
File "d:\python\Lib\multiprocessing\connection.py", line 200, in send_bytes
self._send_bytes(m[offset:offset + size])
File "d:\python\Lib\multiprocessing\connection.py", line 289, in _send_bytes
ov, err = _winapi.WriteFile(self._handle, buf, overlapped=True)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
OSError: [WinError 87] 参数错误。
Is it a bug or I just made some mistake? How can I pass a large data into the subprocess?
As described, I can't pass a large dataframe into the sub-process when using the python standard library multiprocessing, or the concurrent.futures library.
Python version: 3.11.8 system: windows 11 23H2
Error: assert left > 0. OS Error: parameter is wrong.
Here is an example code:
import pandas as pd
import numpy as np
def calc_sth(big_df):
result = [1]
print("start subprocess")
return result
def multi_call():
big_df = pd.DataFrame(np.random.rand(1000000,1000))
result_list = []
with ProcessPoolExecutor() as executor:
with tqdm(total=10) as pbar:
for i in range(5):
future = executor.submit(calc_sth, big_df)
future.add_done_callback(lambda p: pbar.update(1))
result_list.append(future)
res = []
for r in result_list:
res.append(r.result())
return res
if __name__ == '__main__':
res = multi_call()
print(res)
and here is the error and traceback:
Traceback (most recent call last):
Traceback (most recent call last):
File "d:\python\Lib\multiprocessing\queues.py", line 246, in _feed
send_bytes(obj)
File "d:\python\Lib\multiprocessing\connection.py", line 200, in send_bytes
self._send_bytes(m[offset:offset + size])
File "d:\python\Lib\multiprocessing\connection.py", line 289, in _send_bytes
ov, err = _winapi.WriteFile(self._handle, buf, overlapped=True)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
OSError: [WinError 87] 参数错误。
File "d:\python\Lib\multiprocessing\process.py", line 314, in _bootstrap
self.run()
File "d:\python\Lib\multiprocessing\process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "d:\python\Lib\concurrent\futures\process.py", line 249, in _process_worker
call_item = call_queue.get(block=True)
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "d:\python\Lib\multiprocessing\queues.py", line 103, in get
res = self._recv_bytes()
^^^^^^^^^^^^^^^^^^
File "d:\python\Lib\multiprocessing\connection.py", line 216, in recv_bytes
buf = self._recv_bytes(maxlength)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "d:\python\Lib\multiprocessing\connection.py", line 334, in _recv_bytes
return self._get_more_data(ov, maxsize)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "d:\python\Lib\multiprocessing\connection.py", line 353, in _get_more_data
assert left > 0
^^^^^^^^
AssertionError
10%|████████████████████▊ | 1/10 [00:06<00:55, 6.17s/it]Traceback (most recent call last):
20%|█████████████████████████████████████████▌ | 2/10 [00:06<00:24, 3.09s/it] File "d:\python\Lib\multiprocessing\queues.py", line 246, in _feed
File "d:\python\Lib\multiprocessing\queues.py", line 246, in _feed
send_bytes(obj)
File "d:\python\Lib\multiprocessing\connection.py", line 200, in send_bytes
self._send_bytes(m[offset:offset + size])
File "d:\python\Lib\multiprocessing\connection.py", line 289, in _send_bytes
ov, err = _winapi.WriteFile(self._handle, buf, overlapped=True)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
OSError: [WinError 87] 参数错误。
Is it a bug or I just made some mistake? How can I pass a large data into the subprocess?
Share Improve this question asked Nov 21, 2024 at 5:44 Frank WangFrank Wang 111 silver badge2 bronze badges 1- There are dedicated frameworks for working with huge tables across multiple processes, like pyspark or ray or dask, they only lazily load data from disk so each worker only has a part of the data. – Ahmed AEK Commented Nov 21, 2024 at 9:18
2 Answers
Reset to default 2This is not the way you should be using multiprocessing. Passing large arguments, as you can see, is either very very slow or just doesn't work.
You should either
- Used shared memory for your numpy array,
- Have each processor generate its own data, if possible.
- The main process should pass to each sub process just the data it needs to perform its calculation.
The parameters passed to and returned from subprocesses have to be serialised. If the object(s) being passed to a subprocess are very large, the serialisation can have a significant negative impact on performance.
If you have a large object that you want to pass to multiple subprocesses (where that object's contents are constant) then you could consider pickling the object once then just pass a reference to the subprocesses.
Here's an example that demonstrates the timing difference between "manual" and "implied" serialisation as well as using shared memory.
import pandas as pd
import numpy as np
from tempfile import NamedTemporaryFile
import multiprocessing as mp
from typing import Any
import time
import os
from multiprocessing.shared_memory import SharedMemory
import pickle
LOOP = 10
def sub_1(pfile: str) -> Any:
"""Explicit pickle"""
return pd.read_pickle(pfile).loc[0][0]
def sub_2(df: pd.DataFrame) -> Any:
"""Standard serialisation"""
return df.loc[0][0]
def sub_3(name: str) -> Any:
"""Shared memory"""
try:
shm = SharedMemory(name)
return pickle.loads(shm.buf).loc[0][0]
finally:
shm.close()
def procs() -> int:
ncpus = os.cpu_count() or 2
return max(ncpus - 2, 2)
def main() -> None:
try:
df = pd.DataFrame(np.random.rand(10_000, 10_000))
smb = pickle.dumps(df)
with NamedTemporaryFile(delete=False) as temp:
temp.write(smb)
size = len(smb)
shm = SharedMemory(create=True, size=size)
shm.buf[:size] = smb
del smb
print(f"Pickle file size = {size:,} bytes")
with mp.Pool(procs()) as pool:
for func, arg in (sub_1, temp.name), (sub_2, df), (sub_3, shm.name):
start = time.time()
for result in [pool.apply_async(func=func, args=(arg,)) for _ in range(LOOP)]:
assert result.get() == df.loc[0][0]
duration = time.time() - start
print(f"'{func.__doc__}' {duration=:.4f}")
finally:
os.unlink(temp.name)
shm.close()
shm.unlink()
if __name__ == '__main__':
main()
Output:
Pickle file size = 800,000,596 bytes
'Explicit pickle' duration=2.3946
'Standard serialisation' duration=11.7310
'Shared memory' duration=3.7102
Note:
Performance will vary considerably depending on your platform but one would expect sub_1 ("Explicit pickle") would always be faster than sub_2 ("Standard serialisation"). Interestingly, on MacOS (M2), sub_3 ("Shared memory") is slower than sub_1. However, if you play with the dataframe dimensions you will see these results differ greatly from those shown above. For example, if the dimensions are 10_000 x 5_000, sub_3 performs better than the other two techniques
本文标签: python multiprocessing raise assert error when passing large data into the subprocessStack Overflow
版权声明:本文标题:python multiprocessing raise assert error when passing large data into the subprocess - Stack Overflow 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.betaflare.com/web/1742311877a2451032.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论