admin管理员组文章数量:1326339
I am pletely new to Machine learning and also to tensorflow.js, I am trying to predict the values of the next set but it is giving me "NaN" in result. What am I doing wrong ?
Following this Github example
async function myFirstTfjs(arr) {
// Create a simple model.
const model = tf.sequential();
model.add(tf.layers.dense({units: 1, inputShape: [2]}));
// Prepare the model for training: Specify the loss and the optimizer.
modelpile({
loss: 'meanSquaredError',
optimizer: 'sgd'
});
const xs = tf.tensor([[1,6],
[2,0],
[3,1],
[4,2],
[5,3],
[6,4],
[7,5],
[8,6],
[9,0],
[10,1],
[11,2],
[12,3],
[13,4],
[14,5],
[15,6],
[16,0],
[17,1],
[18,2],
[19,3],
[20,4],
[21,5],
[22,6],
[23,0],
[24,1],
[25,2],
[26,3]]);
const ys = tf.tensor([104780,30280,21605,42415,32710,30385,35230,97795,31985,34570,35180,30095,36175,57300,104140,30735,28715,36035,34515,42355,38355,110080,26745,35315,40365,30655], [26, 1]);
// Train the model using the data.
await model.fit(xs, ys, {epochs: 500});
// Use the model to do inference on a data point the model hasn't seen.
model.predict(tf.tensor(arr, [1, 2])).print();
}
myFirstTfjs([28,5]);
I am pletely new to Machine learning and also to tensorflow.js, I am trying to predict the values of the next set but it is giving me "NaN" in result. What am I doing wrong ?
Following this Github example
async function myFirstTfjs(arr) {
// Create a simple model.
const model = tf.sequential();
model.add(tf.layers.dense({units: 1, inputShape: [2]}));
// Prepare the model for training: Specify the loss and the optimizer.
model.pile({
loss: 'meanSquaredError',
optimizer: 'sgd'
});
const xs = tf.tensor([[1,6],
[2,0],
[3,1],
[4,2],
[5,3],
[6,4],
[7,5],
[8,6],
[9,0],
[10,1],
[11,2],
[12,3],
[13,4],
[14,5],
[15,6],
[16,0],
[17,1],
[18,2],
[19,3],
[20,4],
[21,5],
[22,6],
[23,0],
[24,1],
[25,2],
[26,3]]);
const ys = tf.tensor([104780,30280,21605,42415,32710,30385,35230,97795,31985,34570,35180,30095,36175,57300,104140,30735,28715,36035,34515,42355,38355,110080,26745,35315,40365,30655], [26, 1]);
// Train the model using the data.
await model.fit(xs, ys, {epochs: 500});
// Use the model to do inference on a data point the model hasn't seen.
model.predict(tf.tensor(arr, [1, 2])).print();
}
myFirstTfjs([28,5]);
Share
Improve this question
edited May 2, 2018 at 5:29
Pratik Khadtale
asked May 1, 2018 at 20:04
Pratik KhadtalePratik Khadtale
3055 silver badges11 bronze badges
2 Answers
Reset to default 4What's happening is that the large values in ys
are leading to a very large error. That large error, in bination with the (default) learning rate, are causing the model to overcorrect and be unstable. The model will converge if you lower the learning rate.
const learningRate = 0.0001;
const optimizer = tf.train.sgd(learningRate);
model.pile({
loss: 'meanSquaredError',
optimizer: optimizer,
});
Try convert your output to more readable and change your optimizer
var pred = model.predict(tf.tensor(arr, [1, 2]));
var readable_output = pred.dataSync();
console.log(readable_output);
本文标签: javascripttensorflowjs modelpredict() Prints Tensor NaNStack Overflow
版权声明:本文标题:javascript - tensorflow.js model.predict() Prints Tensor [[NaN],] - Stack Overflow 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.betaflare.com/web/1742200403a2431855.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论