admin管理员组文章数量:1309963
I am wondering how you can rotate an image by only using the transform function. From my understanding this is not possible, since the only things you can do with transform are the following:
- Horizontal scaling
- Horizontal skewing
- Vertical skewing
- Vertical scaling
- Horizontal moving
- Vertical moving
Source:
And I don't see how any of these would be able to rotate the shape, is this even possible. I assume it must be possible, since rotate is in-fact a type transformation.
I am wondering how you can rotate an image by only using the transform function. From my understanding this is not possible, since the only things you can do with transform are the following:
- Horizontal scaling
- Horizontal skewing
- Vertical skewing
- Vertical scaling
- Horizontal moving
- Vertical moving
Source: https://developer.mozilla/en-US/docs/Web/API/Canvas_API/Tutorial/Transformations
And I don't see how any of these would be able to rotate the shape, is this even possible. I assume it must be possible, since rotate is in-fact a type transformation.
Share Improve this question edited Feb 15, 2020 at 21:21 Kevin Renskers 5,9705 gold badges58 silver badges121 bronze badges asked Feb 15, 2020 at 18:02 RockapellaRockapella 531 silver badge8 bronze badges 1- developer.mozilla/en-US/docs/Web/API/Canvas_API/Tutorial/… + rotation is a mix of scaling and skewing, so if you can skew and scale, you can rotate. – Kaiido Commented Feb 16, 2020 at 0:51
4 Answers
Reset to default 122D transform basics
6 values as 3 vectors
The transform is a set of 6 numbers. The 6 numbers as 3 pairs represent the direction and scale of the x axis, the direction and scale of the y axis, and the position of the origin.
Default transform AKA Identity matrix
The default transform (called the identity matrix) has the values ctx.setTransform(1, 0, 0, 1, 0, 0)
meaning that
- the x axis is 1 transformed pixel per CSS pixel in the direction
{x: 1, y: 0}
left to right - the y axis is 1 transformed pixel per CSS pixel in the direction
{x: 0, y: 1}
top to bottom - the origin is at pixel location {x: 0, y: 0} top left corner
Scaling
If we scale the transform we increase the length of the first two vectors. To scale by 2 the transform is ctx.setTransform(2, 0, 0, 2, 0, 0);
- the x axis is 1 transformed pixel for every 2 CSS pixel in the x direction
{x: 2, y: 0}
left to right - the y axis is 1 transformed pixel for every 2 CSS pixel in the y direction
{x: 0, y: 2}
top to bottom - the origin is still top left {x: 0, y: 0}
Rotate and translation
If we want to rotate by 90deg a square 256 by 256 image then the transform is ctx.setTransform(0, 1, -1, 0, 256, 0)
- the x axis is 1 transformed pixel per CSS pixel down in the y direction
{x: 0, y: 1}
- the y axis is 1 transformed pixel per CSS pixel across in the negative x direction
{x: -1, y: 0}
right to left - the origin (where the image 0, 0 will be on the canvas) is {x: 256, y: 0}
Thus if we run
ctx.setTransform(0, 1, -1, 0, 256, 0);
ctx.drawImage(myImage, 0, 0, 256, 256); // will draw image rotated 90deg CW
We get a rotated image.
A vector
A vector is two values that have a x and y value. The vector defines a direction and length.
Create a rotated unit vector
To convert a direction to a vector we use sin and cos
const myDirection = angle;
const myDirectionAsRadians = angle * (Math.PI / 180); // convert angle to radians
const x = Math.cos(myDirectionAsRadians)
const y = Math.sin(myDirectionAsRadians)
If we set myDirection
to 90 (deg) then x = 0
and y = 1
pointing down the canvas
Using sin and cos creates a vector in any direction. It has a special property in that its length is always 1. We call such a vector a Unit vector. You may sometimes see a vector being normalized. This converts a vector of any length to a unit vector. It is done by dividing the vector x and y by its length.
function normalize(vector) {
const length = Math.hypot(vector.x, vector.y);
vector.x /= length;
vector.y /= length;
}
NOTE a vector with zero length eg x: 0, y:0
can not be normalized. Not because it has no length (the length is 0) but because it has no direction.
Scale a rotated vector
We can define an angle and a scale
const myDirection = -90;
const myDirectionAsRadians = -90 * (Math.PI / 180); // -90 as radians
const myScale = 2;
const x = Math.cos(myDirectionAsRadians) * myScale
const y = Math.sin(myDirectionAsRadians) * myScale
Now for -90 deg the vector is x = 0
and y = -2
pointing up and two CSS pixels long.
Quick rotate vector 90deg CW
For a uniform scale and rotation (the image is always square) all we need is a single vector. For example from the above. x = 0
and y = -2
(pointing up) can be rotated 90 CW by swapping the two ponents and negating the new x. eg xx = -y
and y = x
to get xx = 2
and y = 0
2 CSS pixels from left two right. Thus we have the direction and scale of both the x and y axis. With the y axis always 90 CW from the x.
Using the transform to draw
Create rotated and scaled transform
To create a transform that rotates any angle and scales by any amount
function scaleAndRotate(scale, rotate) { // rotate is in radians
// get direction and length of x axis
const xAX = Math.cos(rotate) * scale;
const xAY = Math.sin(rotate) * scale;
// get direction and length of y axis that is 90 deg CW of x axis and same length
const [yAX, yAY] = [-xAY, xAX]; // swap and negate new x
// set the transform
ctx.setTransform(xAX, xAY, yAX, yAY, 0, 0);
}
Drawing an image
Lets create a function that will draw an image anywhere on the canvas that is rotated and scaled uniformly. We will use the center of the image as the reference point
function drawImageScaleRotate(img, x, y, scale, rotate) {
// define the direction and scale of x axis
const xAX = Math.cos(rotate) * scale;
const xAY = Math.sin(rotate) * scale;
// create the transform with yaxis at 90 CW of x axis and origin at x, y
ctx.setTransform(xAX, xAY, -xAY, xAX, x, y);
// Draw the image so that its center is at the new origin x, y
ctx.drawImage(img, -img.width / 2, -img.height / 2);
}
There is much more
When we set the transform with ctx.setTranform
we replace the existing transform. This transform remains current. If we use ctx.transform
, ctx.rotate
, ctx.scale
, ctx.translate
the transforms are applied to the current transform, you build a transform in stages.
The transform functions are relatively expensive in terms of CPU cycles. That is way using sin and cos to build the matrix is much faster than using ctx.scale
, ctx.rotate
, ctx.translate
to do the same thing starting from default.
Building transforms can bee tricky as we need to keep track of what stage we are at.
We generally only use these function not to transform a single image (text, path, or what ever) but to create linked transforms.
For example a game object like a tank. The body of the tank is transformed (rotated and positioned) then the turret which is rotated with the body but has an additional independent rotation by using ctx.rotate
. Full explanation is beyond the scope of this question.
The final function
From all this we can create a simplified function that will draw an image with its center at any location, that is uniformly scaled and rotated
function drawImageScaleRotate(img, x, y, scale, rotate) {
const xAX = Math.cos(rotate) * scale;
const xAY = Math.sin(rotate) * scale;
ctx.setTransform(xAX, xAY, -xAY, xAX, x, y);
ctx.drawImage(img, -img.width / 2, -img.height / 2);
}
To reset the transform to the default use ctx.resetTransform
NOTE not fully supported yet or use ctx.setTransform(1,0,0,1,0,0);
Animated transforms faster than CSS + HTML or SVG
Using the above function is the 2nd fastest way to draw animated rotated scaled images, faster than CSS + HTML or SVG. You can literally fill the screen with animated images.
Demo
var w,h;
var image = new Image;
image.src = "https://i.sstatic/C7qq2.png?s=328&g=1";
var canvas = document.createElement("canvas");
var ctx = canvas.getContext("2d");
canvas.style.position = "absolute";
canvas.style.top = "0px";
canvas.style.left = "0px";
document.body.appendChild(canvas);
const resize = () => { w = canvas.width = innerWidth; h = canvas.height = innerHeight;}
const rand = (min,max) => Math.random() * (max ?(max-min) : min) + (max ? min : 0);
const DO = (count,callback) => { while (count--) { callback(count) } }
resize();
addEventListener("resize",resize);
const sprites = [];
DO(500,()=>{
sprites.push({
xr : rand(w), yr : rand(h),
x : 0, y : 0, // actual position of sprite
r : rand(Math.PI * 2),
scale : rand(0.1,0.25),
dx : rand(-2,2), dy : rand(-2,2),
dr : rand(-0.2,0.2),
});
});
function drawImage(image, spr){
const xAX = Math.cos(spr.r) * spr.scale;
const xAY = Math.sin(spr.r) * spr.scale;
ctx.setTransform(xAX, xAY, -xAY, xAX, spr.x, spr.y);
ctx.drawImage(image, -image.width / 2, -image.height / 2);
}
function update(){
var ihM,iwM;
ctx.setTransform(1,0,0,1,0,0);
ctx.clearRect(0,0,w,h);
if(image.plete){
var iw = image.width;
var ih = image.height;
for(var i = 0; i < sprites.length; i ++){
var spr = sprites[i];
spr.xr += spr.dx;
spr.yr += spr.dy;
spr.r += spr.dr;
// keeps images in canvas adds space to all sides so that image
// can move pletely of the canvas befor warping to other side
// I do this to prevent images visualy popping in and out at edges
iwM = iw * spr.scale * 2 + w;
ihM = ih * spr.scale * 2 + h;
spr.x = ((spr.xr % iwM) + iwM) % iwM - iw * spr.scale;
spr.y = ((spr.yr % ihM) + ihM) % ihM - ih * spr.scale;
drawImage(image,spr);
}
}
requestAnimationFrame(update);
}
requestAnimationFrame(update);
If you are wondering which is the fastest way to draw animated content. That is via webGL. The above can draw 1000 scaled rotated images on most devices at a good frame rate. WebGL can easily draw 10000 (with extra features eg colored) in the same time.
You can rotate your image easily. You can specify angles by which you wants to apply rotation.
Source : https://www.w3schools./cssref/css3_pr_transform.asp
<style>
img.a {
transform: rotate(180deg);
}
</style>
<img class="a" src="https://picsum.photos/id/237/200/300"/>
use transform "rotate".and use it as below
p{
color:red;
font-size:12px;
text-align:center;
}
.rotate1{
transform:rotate(45deg);
margin-top:40px;
}
.rotate2{
transform:rotate(90deg);
margin-top:40px;
}
.rotate3{
transform:rotate(180deg);
margin-top:40px;
}
<p class="rotate1">ROTATE1</p>
<p class="rotate2">ROTATE2</p>
<p class="rotate3">ROTATE3</p>
You have ctx.rotate(radians)
function.
Read below:
https://www.w3schools./tags/canvas_rotate.asp
本文标签: javascriptHow do I rotate a html canvas shape by only using a transformStack Overflow
版权声明:本文标题:javascript - How do I rotate a html canvas shape by only using a transform? - Stack Overflow 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.betaflare.com/web/1741822010a2399422.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论