admin管理员组

文章数量:1244304

Im running into error while trying to save pyspark data frame into parquet file. The directory is located on the external volume attached to the workspace I'm working on, and spark creates empty folder test_2.parquet itself but then throws the error. Im running spark locally.

I have no problem transforming this pyspark data frame to pandas, and saving it using pandas, but I would like to be able to do it through spark if possible.

Code I'm running (paths are obfuscated):

df = spark.read.parquet(different_path)
df.write.mode("overwrite").parquet("/PATH/test_2.parquet")

ls -l command for that test_2.parquet directory, which indicates that all other users should have write permissions too:

drwxrwxrwx 2 root ubuntu 0 Feb 17 07:56 test_2.parquet

Error:


Py4JJavaError                             Traceback (most recent call last)
/SCRIPT_PATH/script.py in line 2
----> 69 df.write.mode("overwrite").parquet("/PATH/test_2.parquet")

File /opt/conda/envs/default/lib/python3.9/site-packages/pyspark/sql/readwriter.py:1721, in DataFrameWriter.parquet(self, path, mode, partitionBy, compression)
   1719     self.partitionBy(partitionBy)
   1720 self._set_opts(compression=compression)
-> 1721 self._jwrite.parquet(path)

File /opt/conda/envs/default/lib/python3.9/site-packages/py4j/java_gateway.py:1322, in JavaMember.__call__(self, *args)
   1316 command = proto.CALL_COMMAND_NAME +\
   1317     selfmand_header +\
   1318     args_command +\
   1319     proto.END_COMMAND_PART
   1321 answer = self.gateway_client.send_command(command)
-> 1322 return_value = get_return_value(
   1323     answer, self.gateway_client, self.target_id, self.name)
   1325 for temp_arg in temp_args:
   1326     if hasattr(temp_arg, "_detach"):

File /opt/conda/envs/default/lib/python3.9/site-packages/pyspark/errors/exceptions/captured.py:179, in capture_sql_exception.<locals>.deco(*a, **kw)
    177 def deco(*a: Any, **kw: Any) -> Any:
    178     try:
--> 179         return f(*a, **kw)
    180     except Py4JJavaError as e:
    181         converted = convert_exception(e.java_exception)

File /opt/conda/envs/default/lib/python3.9/site-packages/py4j/protocol.py:326, in get_return_value(answer, gateway_client, target_id, name)
    324 value = OUTPUT_CONVERTER[type](answer[2:], gateway_client)
    325 if answer[1] == REFERENCE_TYPE:
--> 326     raise Py4JJavaError(
    327         "An error occurred while calling {0}{1}{2}.\n".
    328         format(target_id, ".", name), value)
    329 else:
    330     raise Py4JError(
    331         "An error occurred while calling {0}{1}{2}. Trace:\n{3}\n".
    332         format(target_id, ".", name, value))


Py4JJavaError: An error occurred while calling o55.parquet.
: ExitCodeException exitCode=1: chmod: changing permissions of '/PATH/test_2.parquet': Operation not permitted
at .apache.hadoop.util.Shell.runCommand(Shell.java:1007)
at .apache.hadoop.util.Shell.run(Shell.java:900)
at .apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:1212)
at .apache.hadoop.util.Shell.execCommand(Shell.java:1306)
at .apache.hadoop.util.Shell.execCommand(Shell.java:1288)
at .apache.hadoop.fs.RawLocalFileSystem.setPermission(RawLocalFileSystem.java:978)
at .apache.hadoop.fs.RawLocalFileSystem.mkOneDirWithMode(RawLocalFileSystem.java:660)
at .apache.hadoop.fs.RawLocalFileSystem.mkdirsWithOptionalPermission(RawLocalFileSystem.java:700)
at .apache.hadoop.fs.RawLocalFileSystem.mkdirs(RawLocalFileSystem.java:672)
at .apache.hadoop.fs.RawLocalFileSystem.mkdirsWithOptionalPermission(RawLocalFileSystem.java:699)
at .apache.hadoop.fs.RawLocalFileSystem.mkdirs(RawLocalFileSystem.java:672)
at .apache.hadoop.fs.RawLocalFileSystem.mkdirsWithOptionalPermission(RawLocalFileSystem.java:699)
at .apache.hadoop.fs.RawLocalFileSystem.mkdirs(RawLocalFileSystem.java:672)
at .apache.hadoop.fs.ChecksumFileSystem.mkdirs(ChecksumFileSystem.java:788)
at .apache.hadoop.mapreduce.lib.output.FileOutputCommitter.setupJob(FileOutputCommitter.java:356)
at .apache.spark.internal.io.HadoopMapReduceCommitProtocol.setupJob(HadoopMapReduceCommitProtocol.scala:188)
at .apache.spark.sql.execution.datasources.FileFormatWriter$.writeAndCommit(FileFormatWriter.scala:269)
at .apache.spark.sql.execution.datasources.FileFormatWriter$.executeWrite(FileFormatWriter.scala:304)
at .apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:190)
at .apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:190)
at .apache.spark.sql.executionmand.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:113)
at .apache.spark.sql.executionmand.DataWritingCommandExec.sideEffectResult(commands.scala:111)
at .apache.spark.sql.executionmand.DataWritingCommandExec.executeCollect(commands.scala:125)
at .apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.$anonfun$applyOrElse$1(QueryExecution.scala:107)
at .apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$6(SQLExecution.scala:125)
at .apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:201)
at .apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:108)
at .apache.spark.sql.SparkSession.withActive(SparkSession.scala:900)
at .apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:66)
at .apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:107)
at .apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:98)
at .apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:461)
at .apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(origin.scala:76)
at .apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:461)
at .apache.spark.sql.catalyst.plans.logical.LogicalPlan$apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDownWithPruning(LogicalPlan.scala:32)
at .apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:267)
at .apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning$(AnalysisHelper.scala:263)
at .apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:32)
at .apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:32)
at .apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:437)
at .apache.spark.sql.execution.QueryExecution.eagerlyExecuteCommands(QueryExecution.scala:98)
at .apache.spark.sql.execution.QueryExecutionmandExecuted$lzycompute(QueryExecution.scala:85)
at .apache.spark.sql.execution.QueryExecutionmandExecuted(QueryExecution.scala:83)
at .apache.spark.sql.execution.QueryExecution.assertCommandExecuted(QueryExecution.scala:142)
at .apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:869)
at .apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:391)
at .apache.spark.sql.DataFrameWriter.saveInternal(DataFrameWriter.scala:364)
at .apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:243)
at .apache.spark.sql.DataFrameWriter.parquet(DataFrameWriter.scala:802)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.base/java.lang.reflect.Method.invoke(Method.java:566)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:374)
at py4j.Gateway.invoke(Gateway.java:282)
at py4jmands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4jmands.CallCommand.execute(CallCommand.java:79)
at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
at java.base/java.lang.Thread.run(Thread.java:829)

本文标签: pythonError on saving pyspark dataframe to parquetStack Overflow