admin管理员组文章数量:1134577
I am developing an image generation Gradio app that uses multiple models like SD3.5, Flux, and others to generate images from a given prompt.
The app has 7 tabs, each corresponding to a specific model. Each tab displays an image generated by its respective model.
My problem is that I am unable to show a progress bar for each tab individually. Currently, the progress bar is displayed across all tabs simultaneously. However, I need a 'tab-specific progress bar.'
Below is my codebase and screenshots of the app that mocks the image generation process in the attachment. How can I implement this feature?
import random
from time import sleep
import gradio as gr
import threading
import requests
from PIL import Image
from io import BytesIO
# Constants
MAX_IMAGE_SIZE = 1024
# Model configurations
MODEL_CONFIGS = {
"Stable Diffusion 3.5": {
"repo_id": "stabilityai/stable-diffusion-3.5-large",
"pipeline_class": "StableDiffusion3Pipeline"
},
"FLUX": {
"repo_id": "black-forest-labs/FLUX.1-dev",
"pipeline_class": "FluxPipeline"
},
"PixArt": {
"repo_id": "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS",
"pipeline_class": "PixArtSigmaPipeline"
},
"AuraFlow": {
"repo_id": "fal/AuraFlow",
"pipeline_class": "AuraFlowPipeline"
},
"Kandinsky": {
"repo_id": "kandinsky-community/kandinsky-3",
"pipeline_class": "Kandinsky3Pipeline"
},
"Hunyuan": {
"repo_id": "Tencent-Hunyuan/HunyuanDiT-Diffusers",
"pipeline_class": "HunyuanDiTPipeline"
},
"Lumina": {
"repo_id": "Alpha-VLLM/Lumina-Next-SFT-diffusers",
"pipeline_class": "LuminaText2ImgPipeline"
}
}
# Dictionary to store model pipelines
pipes = {}
model_locks = {model_name: threading.Lock() for model_name in MODEL_CONFIGS.keys()}
def fetch_image_from_url(url):
try:
response = requests.get(url)
response.raise_for_status()
return Image.open(BytesIO(response.content))
except Exception as e:
print(f"Error fetching image from URL {url}: {e}")
return None
def generate_all(prompt, negative_prompt, seed, randomize_seed, width, height,
guidance_scale, num_inference_steps):
# Initialize a list to store all outputs
all_outputs = [None] * (len(MODEL_CONFIGS) * 2) # Pre-fill with None for each model's image and seed
for idx, model_name in enumerate(MODEL_CONFIGS.keys()):
try:
progress_dict[model_name](0, desc=f"Starting generation for {model_name}...")
print(f"IMAGE GENERATING {model_name}")
generated_seed = seed if not randomize_seed else random.randint(0, 100000)
# Fetch an image from a URL
url = f".png?text=Hello+{model_name}+ +{generated_seed}" # Replace with actual URL as needed
image = fetch_image_from_url(url)
progress_dict[model_name](0.9, desc=f"downloaded {model_name}...")
# Update the outputs array with the result and seed, leaving remaining slots as None
all_outputs[idx * 2] = image # Image slot
all_outputs[idx * 2 + 1] = generated_seed # Seed slot
# Add intermediate results to progress * (len(all_outputs) - len(all_outputs))
yield all_outputs + [None]
progress_dict[model_name](1, desc=f"generated {model_name}...")
sleep(1) # Simulate processing time
except Exception as e:
print(f"Error generating with {model_name}: {str(e)}")
# Leave the slots for this model as None
all_outputs[idx * 2] = None
all_outputs[idx * 2 + 1] = None
# Return the final completed array
return all_outputs
# Gradio Interface
css = """
#col-container {
margin: 0 auto;
max-width: 1024px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# Multi-Model Image Generation")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Generate", scale=0, variant="primary")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=100,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
memory_indicator = gr.Markdown("Current memory usage: 0 GB")
with gr.Row():
with gr.Column(scale=2):
with gr.Tabs() as tabs:
results = {}
seeds = {}
progress_dict: dict[str, gr.Progress] = {}
for model_name in MODEL_CONFIGS.keys():
with gr.Tab(model_name):
results[model_name] = gr.Image(label=f"{model_name} Result")
seeds[model_name] = gr.Number(label="Seed used", visible=True)
progress_dict[model_name] = gr.Progress()
# Prepare the input and output components
input_components = [
prompt, seed, randomize_seed,
]
output_components = []
for model_name in MODEL_CONFIGS.keys():
output_components.extend([results[model_name], seeds[model_name]])
run_button.click(
fn=generate_all,
inputs=input_components,
outputs=output_components,
)
if __name__ == "__main__":
demo.launch()
I am developing an image generation Gradio app that uses multiple models like SD3.5, Flux, and others to generate images from a given prompt.
The app has 7 tabs, each corresponding to a specific model. Each tab displays an image generated by its respective model.
My problem is that I am unable to show a progress bar for each tab individually. Currently, the progress bar is displayed across all tabs simultaneously. However, I need a 'tab-specific progress bar.'
Below is my codebase and screenshots of the app that mocks the image generation process in the attachment. How can I implement this feature?
import random
from time import sleep
import gradio as gr
import threading
import requests
from PIL import Image
from io import BytesIO
# Constants
MAX_IMAGE_SIZE = 1024
# Model configurations
MODEL_CONFIGS = {
"Stable Diffusion 3.5": {
"repo_id": "stabilityai/stable-diffusion-3.5-large",
"pipeline_class": "StableDiffusion3Pipeline"
},
"FLUX": {
"repo_id": "black-forest-labs/FLUX.1-dev",
"pipeline_class": "FluxPipeline"
},
"PixArt": {
"repo_id": "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS",
"pipeline_class": "PixArtSigmaPipeline"
},
"AuraFlow": {
"repo_id": "fal/AuraFlow",
"pipeline_class": "AuraFlowPipeline"
},
"Kandinsky": {
"repo_id": "kandinsky-community/kandinsky-3",
"pipeline_class": "Kandinsky3Pipeline"
},
"Hunyuan": {
"repo_id": "Tencent-Hunyuan/HunyuanDiT-Diffusers",
"pipeline_class": "HunyuanDiTPipeline"
},
"Lumina": {
"repo_id": "Alpha-VLLM/Lumina-Next-SFT-diffusers",
"pipeline_class": "LuminaText2ImgPipeline"
}
}
# Dictionary to store model pipelines
pipes = {}
model_locks = {model_name: threading.Lock() for model_name in MODEL_CONFIGS.keys()}
def fetch_image_from_url(url):
try:
response = requests.get(url)
response.raise_for_status()
return Image.open(BytesIO(response.content))
except Exception as e:
print(f"Error fetching image from URL {url}: {e}")
return None
def generate_all(prompt, negative_prompt, seed, randomize_seed, width, height,
guidance_scale, num_inference_steps):
# Initialize a list to store all outputs
all_outputs = [None] * (len(MODEL_CONFIGS) * 2) # Pre-fill with None for each model's image and seed
for idx, model_name in enumerate(MODEL_CONFIGS.keys()):
try:
progress_dict[model_name](0, desc=f"Starting generation for {model_name}...")
print(f"IMAGE GENERATING {model_name}")
generated_seed = seed if not randomize_seed else random.randint(0, 100000)
# Fetch an image from a URL
url = f"https://placehold.co/600x400/000000/FFFFFF.png?text=Hello+{model_name}+ +{generated_seed}" # Replace with actual URL as needed
image = fetch_image_from_url(url)
progress_dict[model_name](0.9, desc=f"downloaded {model_name}...")
# Update the outputs array with the result and seed, leaving remaining slots as None
all_outputs[idx * 2] = image # Image slot
all_outputs[idx * 2 + 1] = generated_seed # Seed slot
# Add intermediate results to progress * (len(all_outputs) - len(all_outputs))
yield all_outputs + [None]
progress_dict[model_name](1, desc=f"generated {model_name}...")
sleep(1) # Simulate processing time
except Exception as e:
print(f"Error generating with {model_name}: {str(e)}")
# Leave the slots for this model as None
all_outputs[idx * 2] = None
all_outputs[idx * 2 + 1] = None
# Return the final completed array
return all_outputs
# Gradio Interface
css = """
#col-container {
margin: 0 auto;
max-width: 1024px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# Multi-Model Image Generation")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Generate", scale=0, variant="primary")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=100,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
memory_indicator = gr.Markdown("Current memory usage: 0 GB")
with gr.Row():
with gr.Column(scale=2):
with gr.Tabs() as tabs:
results = {}
seeds = {}
progress_dict: dict[str, gr.Progress] = {}
for model_name in MODEL_CONFIGS.keys():
with gr.Tab(model_name):
results[model_name] = gr.Image(label=f"{model_name} Result")
seeds[model_name] = gr.Number(label="Seed used", visible=True)
progress_dict[model_name] = gr.Progress()
# Prepare the input and output components
input_components = [
prompt, seed, randomize_seed,
]
output_components = []
for model_name in MODEL_CONFIGS.keys():
output_components.extend([results[model_name], seeds[model_name]])
run_button.click(
fn=generate_all,
inputs=input_components,
outputs=output_components,
)
if __name__ == "__main__":
demo.launch()
Share
Improve this question
edited Jan 2 at 5:58
RagAnt
asked Jan 1 at 7:20
RagAntRagAnt
1,0044 gold badges19 silver badges40 bronze badges
3
- Is this a web app? Which bit of your code represents the progress bar? – halfer Commented Jan 1 at 11:35
- You can consider making the most minimal code and asking. – redoc Commented Jan 4 at 12:58
- @redoc this is the minimum code – RagAnt Commented Jan 5 at 6:19
1 Answer
Reset to default 1 +100You need to manually pass the progress bar and maintain tabs differently. Also need to use callback_on_step_end with manual ones is needed.
Try this code:
import spaces
import torch
import random
import numpy as np
from inspect import signature
from diffusers import (
FluxPipeline,
StableDiffusion3Pipeline,
PixArtSigmaPipeline,
SanaPipeline,
AuraFlowPipeline,
Kandinsky3Pipeline,
HunyuanDiTPipeline,
LuminaText2ImgPipeline,AutoPipelineForText2Image
)
import gradio as gr
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
class ProgressPipeline(DiffusionPipeline):
def __init__(self, original_pipeline):
super().__init__()
self.original_pipeline = original_pipeline
# Register all components from the original pipeline
for attr_name, attr_value in vars(original_pipeline).items():
setattr(self, attr_name, attr_value)
@torch.no_grad()
def __call__(
self,
prompt,
num_inference_steps=30,
generator=None,
guidance_scale=7.5,
callback=None,
callback_steps=1,
**kwargs
):
# Initialize the progress tracking
self._num_inference_steps = num_inference_steps
self._step = 0
def progress_callback(step_index, timestep, callback_kwargs):
if callback and step_index % callback_steps == 0:
# Pass self (the pipeline) to the callback
callback(self, step_index, timestep, callback_kwargs)
return callback_kwargs
# Monkey patch the original pipeline's progress tracking
original_step = self.original_pipeline.scheduler.step
def wrapped_step(*args, **kwargs):
self._step += 1
progress_callback(self._step, None, {})
return original_step(*args, **kwargs)
self.original_pipeline.scheduler.step = wrapped_step
try:
# Call the original pipeline
result = self.original_pipeline(
prompt=prompt,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale,
**kwargs
)
return result
finally:
# Restore the original step function
self.original_pipeline.scheduler.step = original_step
cache_dir = '/workspace/hf_cache'
MODEL_CONFIGS = {
"FLUX": {
"repo_id": "black-forest-labs/FLUX.1-dev",
"pipeline_class": FluxPipeline,
},
"Stable Diffusion 3.5": {
"repo_id": "stabilityai/stable-diffusion-3.5-large",
"pipeline_class": StableDiffusion3Pipeline,
},
"PixArt": {
"repo_id": "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS",
"pipeline_class": PixArtSigmaPipeline,
},
"SANA": {
"repo_id": "Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers",
"pipeline_class": SanaPipeline,
},
"AuraFlow": {
"repo_id": "fal/AuraFlow",
"pipeline_class": AuraFlowPipeline,
},
"Kandinsky": {
"repo_id": "kandinsky-community/kandinsky-3",
"pipeline_class": Kandinsky3Pipeline,
},
"Hunyuan": {
"repo_id": "Tencent-Hunyuan/HunyuanDiT-Diffusers",
"pipeline_class": HunyuanDiTPipeline,
},
"Lumina": {
"repo_id": "Alpha-VLLM/Lumina-Next-SFT-diffusers",
"pipeline_class": LuminaText2ImgPipeline,
}
}
def generate_image_with_progress(model_name,pipe, prompt, num_steps, guidance_scale=3.5, seed=None,negative_prompt=None, randomize_seed=None, width=1024, height=1024, num_inference_steps=40, progress=gr.Progress(track_tqdm=True)):
generator = None
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if seed is not None:
generator = torch.Generator("cuda").manual_seed(seed)
else:
generator = torch.Generator("cuda")
def callback(pipe, step_index, timestep, callback_kwargs):
print(f" callback => {step_index}, {timestep}")
if step_index is None:
step_index = 0
cur_prg = step_index / num_steps
progress(cur_prg, desc=f"Step {step_index}/{num_steps}")
return callback_kwargs
print(f"START GENR ")
# Get the signature of the pipe
pipe_signature = signature(pipe)
# Check for the presence of "guidance_scale" and "callback_on_step_end" in the signature
has_guidance_scale = "guidance_scale" in pipe_signature.parameters
has_callback_on_step_end = "callback_on_step_end" in pipe_signature.parameters
# Define common arguments
common_args = {
"prompt": prompt,
"num_inference_steps": num_steps,
"negative_prompt": negative_prompt,
"width": width,
"height": height,
"generator": generator,
}
if has_guidance_scale:
common_args["guidance_scale"] = guidance_scale
if has_callback_on_step_end:
print("has callback_on_step_end and", "has guidance_scale" if has_guidance_scale else "NO guidance_scale")
common_args["callback_on_step_end"] = callback
else:
print("NO callback_on_step_end and", "has guidance_scale" if has_guidance_scale else "NO guidance_scale")
common_args["callback"] = callback
common_args["callback_steps"] = 1
# Generate image
image = pipe(**common_args).images[0]
return seed, image
@spaces.GPU(duration=170)
def create_pipeline_logic(prompt_text, model_name, negative_prompt="", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=4.5, num_inference_steps=40,):
print(f"starting {model_name}")
progress = gr.Progress(track_tqdm=True)
config = MODEL_CONFIGS[model_name]
pipe_class = config["pipeline_class"]
pipe = None
b_pipe = AutoPipelineForText2Image.from_pretrained(
config["repo_id"],
#variant="fp16",
#cache_dir=config["cache_dir"],
torch_dtype=torch.bfloat16
).to("cuda")
pipe_signature = signature(b_pipe)
# Check for the presence of "callback_on_step_end" in the signature
has_callback_on_step_end = "callback_on_step_end" in pipe_signature.parameters
if not has_callback_on_step_end:
pipe = ProgressPipeline(b_pipe)
print("ProgressPipeline specal")
else:
pipe = b_pipe
gen_seed,image = generate_image_with_progress(
model_name,pipe, prompt_text, num_steps=num_inference_steps, guidance_scale=guidance_scale, seed=seed,negative_prompt = negative_prompt, randomize_seed = randomize_seed, width = width, height = height, progress=progress
)
return f"Seed: {gen_seed}", image
def main():
with gr.Blocks() as app:
gr.Markdown("# Dynamic Multiple Model Image Generation")
prompt_text = gr.Textbox(label="Enter prompt")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=100,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=7.5,
step=0.1,
value=4.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=40,
)
for model_name, config in MODEL_CONFIGS.items():
with gr.Tab(model_name):
button = gr.Button(f"Run {model_name}")
output = gr.Textbox(label="Status")
img = gr.Image(label=model_name, height=300)
button.click(fn=create_pipeline_logic, inputs=[prompt_text, gr.Text(value= model_name,visible=False), negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps], outputs=[output, img])
app.launch()
if __name__ == "__main__":
main()
本文标签: pythonHow to show dedicated progress bar in each tab in a Gradio appStack Overflow
版权声明:本文标题:python - How to show dedicated progress bar in each tab in a Gradio app? - Stack Overflow 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.betaflare.com/web/1736877461a1955977.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论