admin管理员组文章数量:1135141
I'm trying to get the nth root of a number using JavaScript, but I don't see a way to do it using the built in Math
object. Am I overlooking something?
If not...
Is there a math library I can use that has this functionality?
If not...
What's the best algorithm to do this myself?
I'm trying to get the nth root of a number using JavaScript, but I don't see a way to do it using the built in Math
object. Am I overlooking something?
If not...
Is there a math library I can use that has this functionality?
If not...
What's the best algorithm to do this myself?
Share Improve this question asked Sep 5, 2011 at 13:14 NathanNathan 7,02212 gold badges40 silver badges56 bronze badges 2- How many of the roots do you want? Just the single most obvious, or all of them? – Ignacio Vazquez-Abrams Commented Sep 5, 2011 at 13:19
- 1 the obvious answers using Math.pow(x, 1/n) are down below the most upwards ones here - which I don't understand, because these homebaked algos dont offer anything new over the Math.pow usage. Also, for any n-th root that is multiple of 2 or 3 you can use Math.sqrt or Math.cbrt (which ananswer below mentions already), and chain-call them n times to get any 2^n or 3^n -th root (with n >= 1 obviously). or any other factorization, like the 6-th root would be the Math.sqrt(Math.cbrt(x)) for example (or the other way round, it doesnt matter). – Tchakabam Commented Dec 5, 2021 at 6:05
13 Answers
Reset to default 193Can you use something like this?
Math.pow(n, 1/root);
eg.
Math.pow(25, 1/2) == 5
The n
th root of x
is the same as x
to the power of 1/n
. You can simply use Math.pow
:
var original = 1000;
var fourthRoot = Math.pow(original, 1/4);
original == Math.pow(fourthRoot, 4); // (ignoring floating-point error)
Use Math.pow()
Note that it does not handle negative nicely - here is a discussion and some code that does
http://cwestblog.com/2011/05/06/cube-root-an-beyond/
function nthroot(x, n) {
try {
var negate = n % 2 == 1 && x < 0;
if(negate)
x = -x;
var possible = Math.pow(x, 1 / n);
n = Math.pow(possible, n);
if(Math.abs(x - n) < 1 && (x > 0 == n > 0))
return negate ? -possible : possible;
} catch(e){}
}
You could use
Math.nthroot = function(x,n) {
//if x is negative function returns NaN
return this.exp((1/n)*this.log(x));
}
//call using Math.nthroot();
For the special cases of square and cubic root, it's best to use the native functions Math.sqrt
and Math.cbrt
respectively.
As of ES7, the exponentiation operator **
can be used to calculate the nth root as the 1/nth power of a non-negative base:
let root1 = Math.PI ** (1 / 3); // cube root of π
let root2 = 81 ** 0.25; // 4th root of 81
This doesn't work with negative bases, though.
let root3 = (-32) ** 5; // NaN
The n
-th root of x
is a number r
such that r
to the power of 1/n
is x
.
In real numbers, there are some subcases:
- There are two solutions (same value with opposite sign) when
x
is positive andr
is even. - There is one positive solution when
x
is positive andr
is odd. - There is one negative solution when
x
is negative andr
is odd. - There is no solution when
x
is negative andr
is even.
Since Math.pow
doesn't like a negative base with a non-integer exponent, you can use
function nthRoot(x, n) {
if(x < 0 && n%2 != 1) return NaN; // Not well defined
return (x < 0 ? -1 : 1) * Math.pow(Math.abs(x), 1/n);
}
Examples:
nthRoot(+4, 2); // 2 (the positive is chosen, but -2 is a solution too)
nthRoot(+8, 3); // 2 (this is the only solution)
nthRoot(-8, 3); // -2 (this is the only solution)
nthRoot(-4, 2); // NaN (there is no solution)
Well, I know this is an old question. But, based on SwiftNinjaPro's answer, I simplified the function and fixed some NaN issues. Note: This function used ES6 feature, arrow function and template strings, and exponentation. So, it might not work in older browsers:
Math.numberRoot = (x, n) => {
return (((x > 1 || x < -1) && n == 0) ? Infinity : ((x > 0 || x < 0) && n == 0) ? 1 : (x < 0 && n % 2 == 0) ? `${((x < 0 ? -x : x) ** (1 / n))}${"i"}` : (n == 3 && x < 0) ? -Math.cbrt(-x) : (x < 0) ? -((x < 0 ? -x : x) ** (1 / n)) : (n == 3 && x > 0 ? Math.cbrt(x) : (x < 0 ? -x : x) ** (1 / n)));
};
Example:
Math.numberRoot(-64, 3); // Returns -4
Example (Imaginary number result):
Math.numberRoot(-729, 6); // Returns a string containing "3i".
Here's a function that tries to return the imaginary number. It also checks for a few common things first, ex: if getting square root of 0 or 1, or getting 0th root of number x
function root(x, n){
if(x == 1){
return 1;
}else if(x == 0 && n > 0){
return 0;
}else if(x == 0 && n < 0){
return Infinity;
}else if(n == 1){
return x;
}else if(n == 0 && x > 1){
return Infinity;
}else if(n == 0 && x == 1){
return 1;
}else if(n == 0 && x < 1 && x > -1){
return 0;
}else if(n == 0){
return NaN;
}
var result = false;
var num = x;
var neg = false;
if(num < 0){
//not using Math.abs because I need the function to remember if the number was positive or negative
num = num*-1;
neg = true;
}
if(n == 2){
//better to use square root if we can
result = Math.sqrt(num);
}else if(n == 3){
//better to use cube root if we can
result = Math.cbrt(num);
}else if(n > 3){
//the method Digital Plane suggested
result = Math.pow(num, 1/n);
}else if(n < 0){
//the method Digital Plane suggested
result = Math.pow(num, 1/n);
}
if(neg && n == 2){
//if square root, you can just add the imaginary number "i=√-1" to a string answer
//you should check if the functions return value contains i, before continuing any calculations
result += 'i';
}else if(neg && n % 2 !== 0 && n > 0){
//if the nth root is an odd number, you don't get an imaginary number
//neg*neg=pos, but neg*neg*neg=neg
//so you can simply make an odd nth root of a negative number, a negative number
result = result*-1;
}else if(neg){
//if the nth root is an even number that is not 2, things get more complex
//if someone wants to calculate this further, they can
//i'm just going to stop at *n√-1 (times the nth root of -1)
//you should also check if the functions return value contains * or √, before continuing any calculations
result += '*'+n+√+'-1';
}
return result;
}
I have written an algorithm but it is slow when you need many numbers after the point:
https://github.com/am-trouzine/Arithmetic-algorithms-in-different-numeral-systems
NRoot(orginal, nthRoot, base, numbersAfterPoint);
The function returns a string.
E.g.
var original = 1000;
var fourthRoot = NRoot(original, 4, 10, 32);
console.log(fourthRoot);
//5.62341325190349080394951039776481
The ultra short version: const nthroot=(x,root)=>x**(1/root);
JavaScript Math object doesn't have a built-in method specifically for calculating the nth root of a number. However, you can still calculate it using the Math.pow() method by taking advantage of the property that the nth root of a number x is equivalent to raising x to the power of 1/n.
For example, to find the cube root (3rd root) of a number x, you can do:
const x = 27;
const n = 3;
const result = Math.pow(x, 1 / n);
console.log(result); // Output: 3
If you are looking for a library that provides more advanced mathematical functions, you can use a popular JavaScript math library called "math.js". This library extends the capabilities of the built-in Math object and provides additional functions like nthRoot().
First, you need to include the library in your HTML file:
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjs/11.7.0/math.min.js"></script>
Then you can use the nthRoot() function:
const math = require("mathjs");
const x = 125;
const n = 3;
const result = math.nthRoot(x, n);
console.log(result); // Output: 5
Hope this helps!
Image: calculate the nth root of a number
To calculate the nth root of a number in JavaScript, you can use exponentiation. To find the nth root of a number x, you can use the following formula: nth root of x = x^(1/n)
power function (review):
Math.pow(base, exponent);
Now, to calculate the nth root of a number x, you can use this function as follows:
function nthRoot(x, n){
return Math.pow(x, 1 / n);
}
let number = 27;
let root = 3;
let result = nthRoot(number, root);
console.log(result);
// result = 27^(1/3) = 3
Another example:
console.log(nthRoot(1024, 5));
// 1024^(1/5) = 4
const original = 16;
const rootOf = 0.33;
const root = Math.pow(original, 1 / rootOf);
console.log(`${rootOf} Root of ${original} is ${root.toFixed(2)}`);
本文标签: algorithmJavaScript Calculate the nth root of a numberStack Overflow
版权声明:本文标题:algorithm - JavaScript: Calculate the nth root of a number - Stack Overflow 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.betaflare.com/web/1736782436a1952673.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论