admin管理员组

文章数量:1122988

ql

import numpy as np

Q 矩阵初始化为0

q = np.matrix(np.zeros([6, 6]))

Reward 矩阵为提前定义好的。 类似与HMM的生成矩阵。-1表示无相连接的边

r = np.matrix([[-1, -1, -1, -1, 0, -1],
[-1, -1, -1, 0, -1, 100],
[-1, -1, -1, 0, -1, -1],
[-1, 0, 0, -1, 0, -1],
[ 0, -1, -1, 0, -1, 100],
[-1, 0, -1, -1, 0, 100]])

hyperparameter

#折扣因子
gamma = 0.8
#是否选择最后策略的概率
epsilon = 0.4

the main training loop

for episode in range(101):
# random initial state
state = np.random.randint(0, 6)
# 如果不是最终转态
while (state != 5):
# 选择可能的动作
# Even in random case, we cannot choose actions whose r[state, action] = -1.
possible_actions = []
possible_q = []
for action in range(6):
if r[state, action] >= 0:
possible_actions.append(action)
possible_q.append(q[state, action])

    # Step next state, here we use epsilon-greedy algorithm.action = -1if np.random.random() < epsilon:# choose random actionaction = possible_actions[np.random.randint(0, len(possible_actions))]else:# greedyaction = possible_actions[np.argmax(possible_q)]# Update Q valueq[state, action] = r[state, action] + gamma * q[action].max()# Go to the next statestate = action# Display training progress
if episode % 10 == 0:print("------------------------------------------------")print("Training episode: %d" % episode)print(q)

本文标签: ql