admin管理员组文章数量:1122850
Multi
数据集下载链接:
.html
github地址:
Multi-Task Facial Landmark (MTFL人脸数据库),这个数据库包括了12,995张人脸图片,每张图片都被做了一些标注。包括
(1)5个人脸特征点,包括左眼、右眼、鼻子、左嘴角、右嘴角。
(2)标记性别、微笑、眼镜、姿态。
标记数据格式
数据库被分成两个部分:training和tesing,标记的信息全部存放在txt文件中(traning和testing文件)。
文件中的每一行为一张人脸图片的标记信息,他的格式如下:
image path x1...x5,y1..y5 gender smile wearing glasses head pose
--x1...x5,y1...y5: 标记了左眼、右眼、鼻子、左嘴角、右嘴角的坐标位置。
--gender: 1代表男, 2代表女
--smile: 1代表微笑, 2代表不微笑。
--glasses: 1代表戴眼镜, 2代表没戴眼镜。
--head pose: 1 for left profile,2 for left, 3 for frontal, 4 for right, 5 for right profile
对数据预处理文件的解读
- from PIL import Image
- import os
- import numpy as np
- #数据集存放地址
- folder = os.path.abspath(os.path.join("./", os.pardir)+"/MTFL") + "/"
- #最终要将图全部resize成这个大小150*150
- finalSize = 150
- counter = 0
- infoFiles = ["training.txt", "testing.txt"]
- validation_counter = 0
- #建立一个validation.txt文件用于存放验证数据信息
- val_file = open(folder + "validation.txt","a")
- #"training.txt", "testing.txt"中的信息进行处理
- for idx in range(len(infoFiles)):
- info = infoFiles[idx]
- #当idx=0时读取training.txt,当idx=1时读取testing.txt
- f = open(folder+info,"r")
- #打开一个新的文件,用于写入信息
- fnew = open("tmp", 'a')
- #当读取training.txt信息时,创建aug_training.txt文件
- if idx == 0:
- fnew_augmented = open(folder+"aug_"+info,'a')
- lines = f.readlines()
- for line in lines:
- line = line.strip("\n ").split(" ")
- #获取到图片名称
- imgName = line[0].replace("\\", "/")
- if imgName == "":
- break
- #打开图片,读取图片的宽高
- img = Image.open(folder+imgName, mode='r')
- originalWidth = img.width
- originalHeight = img.height
- if (originalWidth != originalHeight):
- # Skip non-square images,若高宽不一致则跳过
- img.close()
- continue
- # Resize and check RGB,将图片resize到150*150
- if(originalWidth != finalSize):
- img = img.resize((finalSize, finalSize), Image.ANTIALIAS) # Image.ANTIALIAS代表高质量
- # Check if img is RGB or greyscale,若图片不是彩色图,则跳过
- pixels = list(img.getdata())
- width, height = img.size
- pixelsArray = np.asarray([pixels[i * width:(i + 1) * width] for i in range(height)])
- if len(pixelsArray.shape) != 3:
- # img is greyscale, skip it
- img.close()
- continue
- coords = []
- # 图片的缩放比例,若大小没有被调整该系数为1,若图像大小调整,同比缩放坐标数据,记录在coords中line[i][1]-line[i][10]
- # 对应x1,x2,x3,x4,x5,y1,y2,y3,y4,y5: 标记了左眼、右眼、鼻子、左嘴角、右嘴角的坐标位置
- coordsScaleFactor = float(finalSize) / float(originalWidth)
- for i in range(1,11):
- coords.append(float(line[i])*coordsScaleFactor)
- #属性gender,smile,glasses,head pose分别对应每行line[i][11]-line[i][14]
- attributes = np.array([int(line[i]) for i in range(11,15)])
- #对testing.txt进行读取,生成1000个用于验证的图片信息于validation.txt中
- if(idx == 1 and validation_counter <= 1000):
- #line[i][0]
- val_file.write(imgName)
- #写入特征点信息
- for coord in coords:
- val_file.write(" " + str(coord))
- #写入属性信息
- for attribute in attributes:
- val_file.write(" " + str(attribute - 1)) # Subtract 1 for better indexing
- val_file.write("\n")
- validation_counter += 1
- # '''
- # --gender: 1代表男, 2代表女
- # --smile: 1代表微笑, 2代表不微笑。
- # --glasses: 1代表戴眼镜, 2代表没戴眼镜。
- # --head pose: 1 for left profile,2 for left, 3 for frontal, 4 for right, 5 for right profile
- # attribute - 1:是为了使索引从0开始,方便训练
- # '''
- #剩下的写入fnew中用于训练
- else:
- # Write resized img to file
- fnew.write(imgName)
- for coord in coords:
- fnew.write(" " + str(coord))
- for attribute in attributes:
- fnew.write(" " + str(attribute - 1)) # Subtract 1 for better indexing
- fnew.write("\n")
- # Mirror the image if it's not part of test data
- if idx == 0:
- # Get the new img name,生成翻转图像的名称./MTFL/lfw_5590/Aaron_Eckhart_0001.jpg-->./MTFL/lfw_5590/Aaron_Eckhart_0001_transl.jpg
- splitName = imgName.split('.')
- imgNameTransp = splitName[0] + '_transl.' + splitName[1]
- # Mirror the image and save it
- #左右翻转图像,存图
- imgTransp = img.copy().transpose(Image.FLIP_LEFT_RIGHT)
- imgTransp.save(folder+imgNameTransp)
- imgTransp.close()
- #生成对应翻转图像特征点及属性特征
- coordsTransp = [0 for i in range(10)]
- # Translate x-coords for eyes, nose, and mouth
- coordsTransp[0] = 150 - coords[1] #左眼睛x1
- coordsTransp[1] = 150 - coords[0] #右眼睛x2
- coordsTransp[2] = 150 - coords[2] #鼻子x3
- coordsTransp[3] = 150 - coords[4] #左嘴角X4
- coordsTransp[4] = 150 - coords[3] #右嘴角x5
- # Translate y-coords for eyes, nose, and mouth
- coordsTransp[5] = coords[6] #左眼睛y1
- coordsTransp[6] = coords[5] #右眼睛y2
- coordsTransp[7] = coords[7] #鼻子y3
- coordsTransp[8] = coords[9] #左嘴角y4
- coordsTransp[9] = coords[8] #右嘴角y5
- # Translate attributes 属性变换gender,smile,glasses,head pose
- attributesTransp = np.array([int(line[i]) for i in range(11,15)])
- attributesTransp[3] = 6 - attributesTransp[3] # Translate head:1 for left profile,2 for left, 3 for frontal, 4 for right, 5 for right profile
- # Write resized old img to augmented file,写入原图的图像信息
- fnew_augmented.write(imgName)
- for coord in coords:
- fnew_augmented.write(" " + str(coord))
- for attribute in attributes:
- fnew_augmented.write(" " + str(attribute - 1))
- fnew_augmented.write("\n")
- # Write mirrored img to augmented file,写入翻转后的图像信息
- fnew_augmented.write(imgNameTransp)
- for coord in coordsTransp:
- fnew_augmented.write(" " + str(coord))
- for attribute in attributesTransp:
- fnew_augmented.write(" " + str(attribute - 1))
- fnew_augmented.write("\n")
- # Save resized img 存的都是resize到150*150的图片
- img.save(folder+imgName)
- img.close()
- counter = counter + 1
- if counter % 1000 == 0:
- print(counter,"files processed")
- #对"training.txt"/"testing.txt"中的每一行读完之后,就关闭该文件
- f.close()
- #对"training.txt"/"testing.txt"中的每一行数据进行操作完成,写入完毕后,就关闭该"tmp"文件
- fnew.close()
- #关闭aug_training.txt
- if idx == 0:
- fnew_augmented.close()
- #删除之前的"training.txt"/"testing.txt"
- os.remove(folder+info)
- #将tmp重命名为"training.txt"/"testing.txt"
- os.rename("tmp",folder+info)
- #都循环完毕后,关闭validation.txt
- val_file.close()
本文标签: Multi
版权声明:本文标题:Multi 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.betaflare.com/web/1686693251a25713.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论