admin管理员组

文章数量:1122944

CRC原理及其逆向破解方法:

介绍:

  这篇短文包含CRC原理介绍和其逆向分析方法,很多程序员和破解者不是很清楚了解
CRC的工作原理,而且几乎没人知道如何逆向分析它的方法,事实上它是非常有用的.
首先,这篇教程教你一般如何计算CRC,你可以将它用在数据代码保护中.第二,主要是
介绍如何逆向分析CRC-32,你可以以此来分析程序中的CRC保护(象反病毒编码).当然
有很多有效的工具用来对付CRC,但我怀疑它是否会说明原理.
  我要告诉你,这篇短文里中应用了很多数学知识,这不会影响一些人,而且会被一般的
程序员与逆向分析者很好理解.为什么?那么如果你不知道数学是如何被应用在CRC中,
我建议你可以停止继续学习了.所以我假定你们(读者)都是具备二进制算术知识的.

第一部分:CRC 介绍,CRC是什么和计算CRC的方法. 

循环冗余码 CRC

  我们都知道CRC.甚至你没有印象,但当你想到那些来自诸如RAR,ZIP等压缩软件发给你
由于错误连接和其他一些意外原因导致的文件错误的恼人的消息时,你就会知道.CRC是块
数据的计算值,比如对每一个文件进行压缩.在一个解压缩过程中,程序会从新计算解压文件
的CRC值,并且将之与从文件中读取的CRC值进行比对,如果值相同,那么正确.在CRC-32中,
会有1/2^32的可能性发生对确认数据更改的校验错误.   
  很多人认为CRC就是循环冗余校验,假如CRC真的就是循环冗余校验,那么很多人都错用了
这个术语.你不能说"这个程序的CRC是12345678".人们也常说某一个程序有CRC校验,而不
说是 "循环冗余校验" 校验.结论:CRC 代表循环冗余码,而不是循环冗余校验. 
  计算是如何完成的呢?好,主要的想法就是将一个文件看成一个被一些数字分割的很长的
位字串,这里会有一个余数---CRC!你总会有一个余数(可以是0),它至多比除数小一.
(9/3=3 余数=0 ; (9+2)/3=3 余数=2)
(或者它本身就包含一个除数在其中).
  在这里CRC计算方法与除法有一点点区别,除法就是将被减数重复的减去除数X次,然后留下
余数.如果你希望得到原值,那么你就要把除数乘上X次,然后加上余数.
  CRC计算使用特殊的减法与加法完成的.也就是一种新的"算法".计算中每一位计算的进位值
被"遗忘"了. 
看如下两个例子,1是普通减法,2和3是特殊的.
     -+
(1) 1101  (2) 1010  1010  (3) 0+0=0  0-0=0
    1010-     1111+ 1111-     0+1=1 *0-1=1
    ----      ----  ----      1+0=1  1-0=1
    0011      0101  0101     *1+1=0  1-1=0
  在(1)中,右数第二列可以看成是0-1=-1,因此要从高位借1,就变成(10+0)-1=1.(这就象普通
的'by-paper'十进制减法).特例(2,3)中,1+1会有正常的结果10,'1'是计算后的进位.这个值
被忽略了.特殊情况0-1应该有正常结果'-1'就要退到下一位.这个值也被忽略了.假如你对编程
有一定了解,这就象,XOR 操作或者更好.
  现在来看一个除法的例子:

在普通算法中:
1001/1111000\1101 13            9/120\13
     1001    -                    09  -|
     ----                         --   |
      1100                         30  |
      1001    -                    27  -
      ----                         --
       0110                         3 -> 余数
       0000    -
       ----
        1100
        1001    -
        ----
         011 -> 3, 余数

在CRC算法中:
1001/1111000\1110               9/120\14 余数为 6
     1001    -
     ----
      1100
      1001    -
      ----
       1010
       1001    -
       ----
        0110
        0000    -
        ----
         110 -> 余数
(例 3)

  这个除法的商并不重要,也没必要去记住,因为他们仅仅是一组无关紧要的位串.真正
重要的是余数!它就是这个值,可以说比原文件还重要的值,他就是基本的CRC.


过度到真正的CRC码计算.

  进行一个CRC计算我们需要选则一个除数,从现在起我们称之为"poly".宽度W就是最高位
的位置,所以这个poly 1001的W 是3,而不是4.注意最高位总是1,当你选定一个宽度,那么你只
需要选择低W各位的值. 
  假如我们想计算一个位串的CRC码,我们想确定每一个位都被处理过,因此,我们要在目标
位串后面加上W个0位.在此例中,我们假设位串为1111.请仔细分析下面一个例子:

Poly                = 10011, 宽度 W=4
位串                Bitstring
Bitstring + W zeros = 110101101 + 0000

10011/1101011010000\110000101 (我们不关心此运算的商)
      10011|||||||| -
      -----||||||||
       10011|||||||
       10011|||||||  -
       -----|||||||
        00001||||||
        00000||||||   -
        -----||||||
         00010|||||
         00000|||||    -
         -----|||||
          00101||||
          00000||||     -
          -----||||
           01010|||
           00000|||      -
           -----|||
            10100||
            10011||       -
            -----||
             01110|
             00000|        -
             -----|
              11100
              10011         -
              -----
               1111 -> 余数 -> the CRC!
(例 4)

重要两点声明如下:
1.只有当Bitstring的最高位为1,我们才将它与poly做XOR运算,否则我们只是将
  Bitstring左移一位.
2.XOR运算的结果就是被操作位串bitstring与低W位进行XOR运算,因为最高位总为0.

算法设计:

  你们都应知道基于位运算的算法是非常慢的而且效率低下.但如果将计算放在每一字节上
进行,那么效率将大大提高.不过我们只能接受poly的宽度是8的倍数(一个字节;).可以形
象的看成这样一个宽度为32的poly(W=32):

          3   2   1   0    byte
        +---+---+---+---+
Pop! <--|   |   |   |   |<-- bitstring with W zero bits added, in this case 32
        +---+---+---+---+
       1<--- 32 bits ---> this is the poly, 4*8 bits

(figure 1)
  这是一个你用来存放暂时CRC结果的记存器,现在我称它为CRC记存器或者记存器.你从右
至左移动位串,当从左边移出的位是1,则整个记存器被与poly的低W位进行XOR运算.(此例
中为32).事实上,我们精确的完成了上面除法所做的事情.


移动前记存器值为:10110100
当从右边移入4位时,左边的高4位将被移出,此例中1011将被移出,而1101被移入.

情况如下:
当前8位CRC记存器      : 01001101
刚刚被移出的高4位     : 1011
我们用此poly          : 101011100, 宽度 W=8

现在我们用如前介绍的方法来计算记存器的新值.
顶部  记存器
---- --------
1011 01001101  高四位和当前记存器值
1010 11100   + (*1) Poly 放在顶部最高位进行XOR运算 (因为那里是1)
-------------
0001 10101101 运算结果

现在我们仍有一位1在高4位:
0001 10101101  上一步结果
   1 01011100+ (*2) Poly 放在顶部的最低位进行XOR运算 (因为那里是1)
-------------
0000 11110001 第二步运算结果
^^^^
现在顶部所有位均为0,所以我们不需要在与poly进行XOR运算

你可以得到相同的结果如果你先将(*1)与(*2)做XOR然后将结果与记存器值做XOR.
这就是标准XOR运算的特性:
(a XOR b) XOR c = a XOR (b XOR c)  由此,推出如下的运算顺序也是正确的.

1010 11100       poly  (*1)    放在顶部最高位
   1 01011100+   polys (*2)    放在顶部最低位
-------------
1011 10111100  (*3) XOR运算结果

The result (*3)   将(*3)与记存器的值做XOR运算
1011 10111100
1011 0

本文标签: 原理方法CRC