admin管理员组文章数量:1404063
I am trying to simulate data from a liner mixed model in R using the sim()
function from the arm
package.
Here is a subset of my data.
> dput(data)
structure(list(id = c(989001026313185, 989001026313143, 989001026313517,
989001004605135, 989001026313424, 989001006700707, 989001005924838,
989001004605145, 989001006700794, 989001026313151, 989001006700633,
989001005924953, 989001005924862, 989001026313498, 989001026313255,
989001026313461, 989001026313160, 989001026313256, 989001026313322,
989001026313172, 989001026313388, 989001026313378, 989001026313357,
989001005924856, 989001026313343, 989001026313417, 989001026313369,
989001026313152, 985121031803859, 989001026313369, 989001006700560,
989001026313370, 989001006700537, 989001026313424, 989001026313463,
989001030278434), sex = c("F", "F", "F", "F", "F", "F", "F",
"F", "F", "F", "F", "F", "F", "F", "M", "M", "M", "M", "M", "F",
"F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "M", "F",
"F", "F", "M"), size = c(52, 75, 71.5, 90, 80.6, 67.6, 86.5,
91.6, 103.1, 77, 70.8, 103.2, 88, 85.2, 50, 51.2, 45.4, 46, 50,
95.6, 85.8, 82, 87.4, 74.6, 74, 93.9, 91, 92.5, 88.3, 92, 92.6,
54.2, 60, 80.2, 94, 51.9), loc = c("loc1", "loc1", "loc1", "loc1",
"loc1", "loc1", "loc1", "loc1", "loc1", "loc1", "loc1", "loc1",
"loc1", "loc1", "loc1", "loc1", "loc1", "loc1", "loc1", "loc2",
"loc2", "loc2", "loc2", "loc2", "loc2", "loc2", "loc2", "loc2",
"loc2", "loc2", "loc2", "loc3", "loc3", "loc3", "loc3", "loc3"
), output = c(-12.2, -13.9, -14.1, -13.1, -11.7, -11.6, -11.6,
-12.6, -12.6, -13.3, -13.3, -13, -13.4, -13.9, -13.8, -11.9,
-13.5, -11.5, -10.7, -15.1, -11.7, -13.9, -12.9, -14.6, -14.3,
-14.9, -13.8, -13.7, -11.8, -14.1, -12.2, -12.5, -12.2, -11.6,
-11.9, -11)), class = "data.frame", row.names = c(NA, -36L))
I ran a LMM to understand the influence of location (factor, 3 levels: loc1, loc2, loc3), sex (factor, 2 levels: M and F) and size (continuous in cm) on the output:
mod <- lme4::lmer(output ~ sex + size + location + (1|id)
I then drew 1000 random values from the joint posterior ditribution of the model parameters.
nsim <- 1000
bsim_mod <- sim(mod, n.sim = nsim)
I would like to plot the results now by visualising the credible interval of the bsim_mod
object and the observations.
While I can do that for the different size range in females (52 to 104 cm) and males (45 to 55 cm) I am struggling on how to also include the location information in the code below.
length(seq(52,104,1)) # number sizes for females = 53
length(seq(45,55,1)) # number sizes for males = 11
## create sex, size, vectors
sex_vec <- factor(c(rep("F", 53), rep("M", 11)), levels = c("F","M"))
size_vec <- c(seq(52,104,1), seq(45,55,1))
## obtain 1000 simulated values from the posterior distribution for the size range in males and females
newdat <- data.frame(sex_vec,size_vec)
colnames(newdat) <- c("sex", "size")
Xmat <- model.matrix(~sex + size, data = newdat)
fitmat <- matrix(ncol = 1000, nrow = nrow(newdat))
for(i in 1:1000) fitmat[,i] <- Xmat %*% bsim_mod@fixef[i,]
newdat$lower <- apply(fitmat, 1, quantile, prob = 0.025)
newdat$postmean <- apply(fitmat, 1, mean)
newdat$upper <- apply(fitmat, 1, quantile, prob = 0.975)
## Now simulate for the mean size only
newdat_mean <- data.frame(sex = factor(c("F", "M"), levels = levels(data$sex)),
size = c(83, 50)
colnames(newdat_mean) <- c("sex", "size")
Xmat_mean <- model.matrix(~sex + size, data = newdat_mean)
fitmat_mean <- matrix(ncol = 1000, nrow = nrow(newdat_mean))
for(i in 1:1000) fitmat_mean[,i] <- Xmat_mean %*% bsim_mod@fixef[i,]
newdat_mean$lower <- apply(fitmat_mC_meanDW, 1, quantile, prob = 0.025)
newdat_mean$postmean <- apply(fitmat_mean, 1, mean)
newdat_mean$upper <- apply(fitmat_mean, 1, quantile, prob = 0.975)
The goal would be to simulate the values but also taking into account that the samples were taken in three different locations.
I am trying to simulate data from a liner mixed model in R using the sim()
function from the arm
package.
Here is a subset of my data.
> dput(data)
structure(list(id = c(989001026313185, 989001026313143, 989001026313517,
989001004605135, 989001026313424, 989001006700707, 989001005924838,
989001004605145, 989001006700794, 989001026313151, 989001006700633,
989001005924953, 989001005924862, 989001026313498, 989001026313255,
989001026313461, 989001026313160, 989001026313256, 989001026313322,
989001026313172, 989001026313388, 989001026313378, 989001026313357,
989001005924856, 989001026313343, 989001026313417, 989001026313369,
989001026313152, 985121031803859, 989001026313369, 989001006700560,
989001026313370, 989001006700537, 989001026313424, 989001026313463,
989001030278434), sex = c("F", "F", "F", "F", "F", "F", "F",
"F", "F", "F", "F", "F", "F", "F", "M", "M", "M", "M", "M", "F",
"F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "M", "F",
"F", "F", "M"), size = c(52, 75, 71.5, 90, 80.6, 67.6, 86.5,
91.6, 103.1, 77, 70.8, 103.2, 88, 85.2, 50, 51.2, 45.4, 46, 50,
95.6, 85.8, 82, 87.4, 74.6, 74, 93.9, 91, 92.5, 88.3, 92, 92.6,
54.2, 60, 80.2, 94, 51.9), loc = c("loc1", "loc1", "loc1", "loc1",
"loc1", "loc1", "loc1", "loc1", "loc1", "loc1", "loc1", "loc1",
"loc1", "loc1", "loc1", "loc1", "loc1", "loc1", "loc1", "loc2",
"loc2", "loc2", "loc2", "loc2", "loc2", "loc2", "loc2", "loc2",
"loc2", "loc2", "loc2", "loc3", "loc3", "loc3", "loc3", "loc3"
), output = c(-12.2, -13.9, -14.1, -13.1, -11.7, -11.6, -11.6,
-12.6, -12.6, -13.3, -13.3, -13, -13.4, -13.9, -13.8, -11.9,
-13.5, -11.5, -10.7, -15.1, -11.7, -13.9, -12.9, -14.6, -14.3,
-14.9, -13.8, -13.7, -11.8, -14.1, -12.2, -12.5, -12.2, -11.6,
-11.9, -11)), class = "data.frame", row.names = c(NA, -36L))
I ran a LMM to understand the influence of location (factor, 3 levels: loc1, loc2, loc3), sex (factor, 2 levels: M and F) and size (continuous in cm) on the output:
mod <- lme4::lmer(output ~ sex + size + location + (1|id)
I then drew 1000 random values from the joint posterior ditribution of the model parameters.
nsim <- 1000
bsim_mod <- sim(mod, n.sim = nsim)
I would like to plot the results now by visualising the credible interval of the bsim_mod
object and the observations.
While I can do that for the different size range in females (52 to 104 cm) and males (45 to 55 cm) I am struggling on how to also include the location information in the code below.
length(seq(52,104,1)) # number sizes for females = 53
length(seq(45,55,1)) # number sizes for males = 11
## create sex, size, vectors
sex_vec <- factor(c(rep("F", 53), rep("M", 11)), levels = c("F","M"))
size_vec <- c(seq(52,104,1), seq(45,55,1))
## obtain 1000 simulated values from the posterior distribution for the size range in males and females
newdat <- data.frame(sex_vec,size_vec)
colnames(newdat) <- c("sex", "size")
Xmat <- model.matrix(~sex + size, data = newdat)
fitmat <- matrix(ncol = 1000, nrow = nrow(newdat))
for(i in 1:1000) fitmat[,i] <- Xmat %*% bsim_mod@fixef[i,]
newdat$lower <- apply(fitmat, 1, quantile, prob = 0.025)
newdat$postmean <- apply(fitmat, 1, mean)
newdat$upper <- apply(fitmat, 1, quantile, prob = 0.975)
## Now simulate for the mean size only
newdat_mean <- data.frame(sex = factor(c("F", "M"), levels = levels(data$sex)),
size = c(83, 50)
colnames(newdat_mean) <- c("sex", "size")
Xmat_mean <- model.matrix(~sex + size, data = newdat_mean)
fitmat_mean <- matrix(ncol = 1000, nrow = nrow(newdat_mean))
for(i in 1:1000) fitmat_mean[,i] <- Xmat_mean %*% bsim_mod@fixef[i,]
newdat_mean$lower <- apply(fitmat_mC_meanDW, 1, quantile, prob = 0.025)
newdat_mean$postmean <- apply(fitmat_mean, 1, mean)
newdat_mean$upper <- apply(fitmat_mean, 1, quantile, prob = 0.975)
The goal would be to simulate the values but also taking into account that the samples were taken in three different locations.
Share Improve this question asked Mar 25 at 15:49 smoksmok 577 bronze badges 01 Answer
Reset to default 1I would probably do it like this:
library(lme4)
library(arm)
library(ggplot2)
library(dplyr)
mod <- lme4::lmer(output ~ sex + size + loc + (1|id), data=data)
nsim <- 1000
bsim_mod <- sim(mod, n.sim = nsim)
To generate the data for the simulation you could group by sex and location and then create a sequence of sizes of the range of sizes in each location-sex combination. You can also save the mean size in each location for use later.
newdat <- data %>%
group_by(sex, loc) %>%
reframe(mean_size = round(mean(size)),
size = seq(floor(min(size)), ceiling(max(size)), by=1))
You can generate the predictions with a product of the model matrix and the simulated coefficients, we can do it without a loop.
Xmat <- model.matrix(~sex + size + loc, data = newdat)
fitmat <- Xmat %*% t(bsim_mod@fixef)
You can summarize the posterior predictions and add them back into the newdat
object.
fitdat <- t(apply(fitmat, 1, \(x)c(mean(x), quantile(x, c(.025,.975)))))
colnames(fitdat) <- c("postmean", "lower", "upper")
newdat <- cbind(newdat, fitdat)
If you need a data frame with just he mean sizes in each location-gender combination, you can now get it by filtering the object you just created, rather than redoing everything.
newdat_mean <- newdat %>%
group_by(sex, loc) %>%
filter(mean_size == size)
Then, you could make the graph.
ggplot(newdat, aes(x=size, y=postmean, colour=sex, fill=sex)) +
geom_ribbon(aes(ymin=lower, ymax=upper), colour="transparent", alpha=.15) +
geom_line() +
facet_wrap(~loc) +
theme_bw()
data <- structure(list(id = c(989001026313185, 989001026313143, 989001026313517,
989001004605135, 989001026313424, 989001006700707, 989001005924838,
989001004605145, 989001006700794, 989001026313151, 989001006700633,
989001005924953, 989001005924862, 989001026313498, 989001026313255,
989001026313461, 989001026313160, 989001026313256, 989001026313322,
989001026313172, 989001026313388, 989001026313378, 989001026313357,
989001005924856, 989001026313343, 989001026313417, 989001026313369,
989001026313152, 985121031803859, 989001026313369, 989001006700560,
989001026313370, 989001006700537, 989001026313424, 989001026313463,
989001030278434), sex = c("F", "F", "F", "F", "F", "F", "F",
"F", "F", "F", "F", "F", "F", "F", "M", "M", "M", "M", "M", "F",
"F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "M", "F",
"F", "F", "M"), size = c(52, 75, 71.5, 90, 80.6, 67.6, 86.5,
91.6, 103.1, 77, 70.8, 103.2, 88, 85.2, 50, 51.2, 45.4, 46, 50,
95.6, 85.8, 82, 87.4, 74.6, 74, 93.9, 91, 92.5, 88.3, 92, 92.6,
54.2, 60, 80.2, 94, 51.9), loc = c("loc1", "loc1", "loc1", "loc1",
"loc1", "loc1", "loc1", "loc1", "loc1", "loc1", "loc1", "loc1",
"loc1", "loc1", "loc1", "loc1", "loc1", "loc1", "loc1", "loc2",
"loc2", "loc2", "loc2", "loc2", "loc2", "loc2", "loc2", "loc2",
"loc2", "loc2", "loc2", "loc3", "loc3", "loc3", "loc3", "loc3"
), output = c(-12.2, -13.9, -14.1, -13.1, -11.7, -11.6, -11.6,
-12.6, -12.6, -13.3, -13.3, -13, -13.4, -13.9, -13.8, -11.9,
-13.5, -11.5, -10.7, -15.1, -11.7, -13.9, -12.9, -14.6, -14.3,
-14.9, -13.8, -13.7, -11.8, -14.1, -12.2, -12.5, -12.2, -11.6,
-11.9, -11)), class = "data.frame", row.names = c(NA, -36L))
Created on 2025-03-25 with reprex v2.1.1.9000
本文标签:
版权声明:本文标题:simulation - Calculate fitted values from simulated posterior distribution for multiple factors in R - Stack Overflow 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.betaflare.com/web/1744185111a2594253.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论