admin管理员组文章数量:1356964
I run the following YOLO code with extra large v12 weights, yet it seems to download the yolov11n model for some reason and uses that. I'm trying to understand this behavior, as I don't see it in the documentation.
from ultralytics import YOLO
import torch
torch.cuda.empty_cache()
model = YOLO("/content/yolo12x.pt") # also tried yolo12l.pt
mydata = '/content/yolo_model_definition.yaml'
results = model.train(
amp=True,
batch=256,
cache='disk',
cos_lr=True,
data=mydata,
deterministic=False,
dropout=0.1,
epochs=100,
exist_ok=True,
fraction=1.0,
freeze=[0, 1, 2, 3, 4],
imgsz=224,
lr0=0.001,
lrf=0.0001,
mask_ratio=4,
multi_scale=True,
nbs=512,
optimizer='auto',
patience=15,
plots=True,
pretrained=True,
project='aihardware',
name='fine_tune_run',
rect=False,
resume=False,
seed=42,
val=True,
verbose=True,
weight_decay=0.0005,
warmup_bias_lr=0.1,
warmup_epochs=3.0,
warmup_momentum=0.8,
close_mosaic=10,
cls=1.0,
pose=0,
overlap_mask=True
)
print(results)
Here's some of the output:
Freezing layer 'model.4.m.1.m.1.cv1.bn.weight'
Freezing layer 'model.4.m.1.m.1.cv1.bn.bias'
Freezing layer 'model.4.m.1.m.1.cv2.conv.weight'
Freezing layer 'model.4.m.1.m.1.cv2.bn.weight'
Freezing layer 'model.4.m.1.m.1.cv2.bn.bias'
Freezing layer 'model.21.dfl.conv.weight'
AMP: running Automatic Mixed Precision (AMP) checks...
Downloading .3.0/yolo11n.pt to 'yolo11n.pt'...
100%|██████████| 5.35M/5.35M [00:00<00:00, 396MB/s]
AMP: checks passed ✅
train: Scanning /content/new/labels.cache... 739 images, 84 backgrounds, 0 corrupt: 100%|██████████| 739/739 [00:00<?, ?it/s]
train: Caching images (0.1GB Disk): 100%|██████████| 739/739 [00:00<00:00, 59497.67it/s]
albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01, num_output_channels=3, method='weighted_average'), CLAHE(p=0.01, clip_limit=(1.0, 4.0), tile_grid_size=(8, 8))
val: Scanning /content/val/labels... 141 images, 16 backgrounds, 0 corrupt: 100%|██████████| 141/141 [00:00<00:00, 998.33it/s]val: New cache created: /content/val/labels.cache
val: Caching images (0.0GB Disk): 100%|██████████| 141/141 [00:00<00:00, 5131.07it/s]
Plotting labels to aihardware/fine_tune_run/labels.jpg...
optimizer: 'optimizer=auto' found, ignoring 'lr0=0.001' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically...
optimizer: AdamW(lr=0.000833, momentum=0.9) with parameter groups 205 weight(decay=0.0), 214 weight(decay=0.0005), 211 bias(decay=0.0)
TensorBoard: model graph visualization added ✅
Image sizes 224 train, 224 val
Using 8 dataloader workers
Logging results to aihardware/fine_tune_run
Starting training for 100 epochs...
Of course, the part of that I'm concerned about is:
Downloading / v8.3.0/yolo11n.pt to 'yolo11n.pt'... 100%|██████████| 5.35M/5.35M [00:00<00:00, 396MB/s]
I have also tried changing pretrained
from True
to a string path to the weights (not that it should need it, since the weights were specified in the creation of the model object). The problem does not happen if I use the YOLO CLI instead of Python:
!yolo train model=/content/yolo12l.pt \
data=/content/yolo_model_definition.yaml \
epochs=100 \
batch=32 \
imgsz=224 \
lr0=0.001 \
lrf=0.0001 \
weight_decay=0.0005 \
dropout=0.1 \
multi_scale=True \
optimizer=auto \
project=aihardware \
name=fine_tune_run \
exist_ok=True \
cos_lr=True \
cache=disk \
val=True \
plots=True \
seed=42 \
warmup_epochs=3.0 \
warmup_bias_lr=0.1 \
warmup_momentum=0.8 \
patience=15 \
cls=1.0 \
mask_ratio=4 \
close_mosaic=10 \
overlap_mask=True \
freeze=0,1,2,3,4 \
device=0 \
amp=True \
fraction=1.0 \
verbose=True
The code above uses the v12 weights and does not download v11. However, ultralytics
seems to be the current version, 8.3.99, so I don't understand the behavior in Python.
Here are the checks:
Ultralytics 8.3.99
本文标签:
版权声明:本文标题:python - Why does YOLO download a nano v11 model (yolov11n) when given the extra larger v12 weights (yolov12x)? - Stack Overflow 内容由网友自发贡献,该文观点仅代表作者本人,
转载请联系作者并注明出处:http://www.betaflare.com/web/1743976590a2570903.html,
本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论