admin管理员组文章数量:1302379
I am training a diffusion model for an image-to-image translation task. Image size is 128 by 128, and batch size is 8 (due to memory limitations).
This is the model I am using:
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, use_attention=False):
super(ResidualBlock, self).__init__()
self.conv_block = ConvBlock(in_channels, out_channels, use_attention=use_attention)
# If input and output channels do not match, add a projection layer to match channels
if in_channels != out_channels:
self.proj = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
else:
self.proj = None
def forward(self, x):
residual = x
print(f"Input to ResidualBlock x shape: {x.shape}")
# Apply the convolution block
x = self.conv_block(x)
print(f"After ConvBlock x shape: {x.shape}")
# If input and output channels do not match, apply the projection
if self.proj is not None:
residual = self.proj(residual)
print(f"Projected residual shape: {residual.shape}")
# Add the residual connection
x = x + residual
print(f"Output from ResidualBlock x shape: {x.shape}")
return x
# Attention block using the "Self-Attention" mechanism
class AttentionBlock(nn.Module):
def __init__(self, in_channels):
super(AttentionBlock, self).__init__()
self.query_conv = nn.Conv2d(in_channels, in_channels // 8, kernel_size=1)
self.key_conv = nn.Conv2d(in_channels, in_channels // 8, kernel_size=1)
self.value_conv = nn.Conv2d(in_channels, in_channels, kernel_size=1)
self.gamma = nn.Parameter(torch.zeros(1))
def forward(self, x):
batch_size, channels, height, width = x.size()
query = self.query_conv(x).view(batch_size, -1, height * width).permute(0, 2, 1)
key = self.key_conv(x).view(batch_size, -1, height * width)
attention = torch.bmm(query, key) # Compute attention map
attention = F.softmax(attention, dim=-1)
value = self.value_conv(x).view(batch_size, -1, height * width)
out = torch.bmm(value, attention.permute(0, 2, 1))
out = out.view(batch_size, channels, height, width)
out = self.gamma * out + x
return out
# Convolution block (Conv + BatchNorm + LeakyReLU)
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, use_attention=False):
super(ConvBlock, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
self.bn = nn.BatchNorm2d(out_channels)
self.relu = nn.LeakyReLU(0.2, inplace=True)
self.use_attention = use_attention
self.attention = AttentionBlock(out_channels) if use_attention else None
def forward(self, x):
residual = x
# Apply convolution, batchnorm, and activation
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
# Apply attention if needed
if self.use_attention:
x = self.attention(x)
# Add the residual connection
x = x + residual
return x
# Downsampling block (Convolution + MaxPooling)
class DownBlock(nn.Module):
def __init__(self, in_channels, out_channels, use_attention=False):
super(DownBlock, self).__init__()
self.residual_block = ResidualBlock(in_channels, out_channels, use_attention=use_attention)
self.pool = nn.MaxPool2d(2)
def forward(self, x):
print(f"Input to DownBlock x shape: {x.shape}")
x = self.residual_block(x)
x = self.pool(x) # MaxPooling
print(f"Output from DownBlock x shape: {x.shape}")
return x
# Upsampling block (Transposed Convolution + Attention)
class UpBlock(nn.Module):
def __init__(self, in_channels, out_channels, skip_channels, use_attention=False):
super(UpBlock, self).__init__()
self.residual_block = ResidualBlock(in_channels + skip_channels, out_channels, use_attention=use_attention)
self.upconv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=2, stride=2)
def forward(self, x, skip):
print(f"Input to UpBlock x shape: {x.shape} and skip shape: {skip.shape}")
x = self.upconv(x)
# Concatenate the skip connection
x = torch.cat([x, skip], dim=1)
# Pass through the residual block
x = self.residual_block(x)
print(f"Output from UpBlock x shape: {x.shape}")
return x
# UNet with Attention and Residual Blocks
class UNetWithAttention(nn.Module):
def __init__(self, in_channels, out_channels, base_channels=[64, 128, 256, 512], position_encoding_dim=128, timestep_dim=1, use_attention=True):
super(UNetWithAttention, self).__init__()
self.timestep_embed_proj = nn.Linear(position_encoding_dim, base_channels[3]) # Match the bottleneck dimension
# Downsampling path
self.down1 = DownBlock(in_channels, base_channels[0], use_attention=use_attention)
self.down2 = DownBlock(base_channels[0], base_channels[1], use_attention=use_attention)
self.down3 = DownBlock(base_channels[1], base_channels[2], use_attention=use_attention)
self.down4 = DownBlock(base_channels[2], base_channels[3], use_attention=use_attention)
# Bottleneck
self.bottleneck = ConvBlock(base_channels[3], base_channels[3], use_attention=use_attention)
# Upsampling path
self.up1 = UpBlock(base_channels[3], base_channels[2], base_channels[2], use_attention=use_attention)
self.up2 = UpBlock(base_channels[2], base_channels[1], base_channels[1], use_attention=use_attention)
self.up3 = UpBlock(base_channels[1], base_channels[0], base_channels[0], use_attention=use_attention)
self.up4 = ConvBlock(base_channels[0], out_channels, use_attention=False)
def forward(self, x, t=None):
# Downsampling
x1, skip1 = self.down1(x) # Store skip connection here
x2, skip2 = self.down2(x1) # Store skip connection here
x3, skip3 = self.down3(x2) # Store skip connection here
x4, skip4 = self.down4(x3) # Store skip connection here
# Bottleneck
bottleneck = self.bottleneck(x4)
# Incorporate timestep embedding (add or concatenate it, depending on design)
if t is not None:
timestep_embed = t.squeeze(1)
timestep_embed = self.timestep_embed_proj(timestep_embed)
_, _, h, w = bottleneck.shape
timestep_embed = timestep_embed.unsqueeze(-1).unsqueeze(-1)
timestep_embed = timestep_embed.repeat(1, 1, h, w)
bottleneck = bottleneck + timestep_embed
# Upsampling
x = self.up1(bottleneck, skip4) # Use skip4 as input to up1
x = self.up2(x, skip3) # Use skip3 as input to up2
x = self.up3(x, skip2) # Use skip2 as input to up3
x = self.up4(x) # No skip connection for the final layer
# Before returning x, apply an upsampling operation (if needed):
x = F.interpolate(x, size=(img_size, img_size), mode='bilinear', align_corners=False)
return x
I use this to initialize the model.
unet = UNetWithAttention(in_channels=6, out_channels=3,
base_channels=[64, 128, 256, 512],
position_encoding_dim=position_encoding_dim,
timestep_dim=1,
use_attention=True) # Provide value here
unet.to(device)
This is my timestep encoding function.
def positional_encoding(t, enc_dim):
"""Encode position information with a sinusoid."""
inv_freq = 1.0 / (10000 ** (torch.arange(0, enc_dim, 2).float() / enc_dim)).to(t.device)
pos_enc_a = torch.sin(t.unsqueeze(-1) * inv_freq) # Use broadcasting
pos_enc_b = torch.cos(t.unsqueeze(-1) * inv_freq) # Use broadcasting
pos_enc = torch.cat([pos_enc_a, pos_enc_b], dim=-1)
return pos_enc
I use this to prepare the data, and my position_encoding_dim is 256.
def prepare_data(input_image, target_image, device=device):
batch_size = input_image.shape[0]
input_image = input_image.to(device)
target_image = target_image.to(device)
t = torch.randint(low=0, high=noise_steps, size=(batch_size,)).to(device)
x_t, noise = diffusion.forward_diffusion(target_image, t)
x_t = torch.cat((input_image, x_t), dim=1)
t = positional_encoding(t.unsqueeze(1), position_encoding_dim)
return x_t.to(device), t.to(device), noise.to(device)
I run this code to train the model.
for epoch in range(epochs):
start_time = time.time()
num_batches = len(train_loader)
print("\n" + f"Epoch {epoch + 1}/{epochs}" + "\n" + "_" * 10)
unet.train()
running_loss = 0.0
for batch_idx, (input_images, target_images) in enumerate(train_loader, start=0):
x_t, t, noise = prepare_data(input_images, target_images)
outputs = unet(x=x_t, t=t)
optimizer.zero_grad()
loss = criterion(outputs, noise)
loss.backward()
optimizer.step()
I keep getting this error:
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-25-1c932665f6dc> in <cell line: 0>()
9 for batch_idx, (input_images, target_images) in enumerate(train_loader, start=0):
10 x_t, t, noise = prepare_data(input_images, target_images)
---> 11 outputs = unet(x=x_t, t=t)
12 optimizer.zero_grad()
13 loss = criterion(outputs, noise)
11 frames
<ipython-input-16-2b9fa24bdc2f> in forward(self, x)
73
74 # Add the residual connection
---> 75 x = x + residual
76 return x
77
RuntimeError: The size of tensor a (64) must match the size of tensor b (6) at non-singleton dimension 1
I don't know how to fix it.
I added print statements to get the output of the model at different points so I can find where the problem is, but I have not been able to pinpoint it still. How can I fix it, please?
I am training a diffusion model for an image-to-image translation task. Image size is 128 by 128, and batch size is 8 (due to memory limitations).
This is the model I am using:
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, use_attention=False):
super(ResidualBlock, self).__init__()
self.conv_block = ConvBlock(in_channels, out_channels, use_attention=use_attention)
# If input and output channels do not match, add a projection layer to match channels
if in_channels != out_channels:
self.proj = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
else:
self.proj = None
def forward(self, x):
residual = x
print(f"Input to ResidualBlock x shape: {x.shape}")
# Apply the convolution block
x = self.conv_block(x)
print(f"After ConvBlock x shape: {x.shape}")
# If input and output channels do not match, apply the projection
if self.proj is not None:
residual = self.proj(residual)
print(f"Projected residual shape: {residual.shape}")
# Add the residual connection
x = x + residual
print(f"Output from ResidualBlock x shape: {x.shape}")
return x
# Attention block using the "Self-Attention" mechanism
class AttentionBlock(nn.Module):
def __init__(self, in_channels):
super(AttentionBlock, self).__init__()
self.query_conv = nn.Conv2d(in_channels, in_channels // 8, kernel_size=1)
self.key_conv = nn.Conv2d(in_channels, in_channels // 8, kernel_size=1)
self.value_conv = nn.Conv2d(in_channels, in_channels, kernel_size=1)
self.gamma = nn.Parameter(torch.zeros(1))
def forward(self, x):
batch_size, channels, height, width = x.size()
query = self.query_conv(x).view(batch_size, -1, height * width).permute(0, 2, 1)
key = self.key_conv(x).view(batch_size, -1, height * width)
attention = torch.bmm(query, key) # Compute attention map
attention = F.softmax(attention, dim=-1)
value = self.value_conv(x).view(batch_size, -1, height * width)
out = torch.bmm(value, attention.permute(0, 2, 1))
out = out.view(batch_size, channels, height, width)
out = self.gamma * out + x
return out
# Convolution block (Conv + BatchNorm + LeakyReLU)
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, use_attention=False):
super(ConvBlock, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
self.bn = nn.BatchNorm2d(out_channels)
self.relu = nn.LeakyReLU(0.2, inplace=True)
self.use_attention = use_attention
self.attention = AttentionBlock(out_channels) if use_attention else None
def forward(self, x):
residual = x
# Apply convolution, batchnorm, and activation
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
# Apply attention if needed
if self.use_attention:
x = self.attention(x)
# Add the residual connection
x = x + residual
return x
# Downsampling block (Convolution + MaxPooling)
class DownBlock(nn.Module):
def __init__(self, in_channels, out_channels, use_attention=False):
super(DownBlock, self).__init__()
self.residual_block = ResidualBlock(in_channels, out_channels, use_attention=use_attention)
self.pool = nn.MaxPool2d(2)
def forward(self, x):
print(f"Input to DownBlock x shape: {x.shape}")
x = self.residual_block(x)
x = self.pool(x) # MaxPooling
print(f"Output from DownBlock x shape: {x.shape}")
return x
# Upsampling block (Transposed Convolution + Attention)
class UpBlock(nn.Module):
def __init__(self, in_channels, out_channels, skip_channels, use_attention=False):
super(UpBlock, self).__init__()
self.residual_block = ResidualBlock(in_channels + skip_channels, out_channels, use_attention=use_attention)
self.upconv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=2, stride=2)
def forward(self, x, skip):
print(f"Input to UpBlock x shape: {x.shape} and skip shape: {skip.shape}")
x = self.upconv(x)
# Concatenate the skip connection
x = torch.cat([x, skip], dim=1)
# Pass through the residual block
x = self.residual_block(x)
print(f"Output from UpBlock x shape: {x.shape}")
return x
# UNet with Attention and Residual Blocks
class UNetWithAttention(nn.Module):
def __init__(self, in_channels, out_channels, base_channels=[64, 128, 256, 512], position_encoding_dim=128, timestep_dim=1, use_attention=True):
super(UNetWithAttention, self).__init__()
self.timestep_embed_proj = nn.Linear(position_encoding_dim, base_channels[3]) # Match the bottleneck dimension
# Downsampling path
self.down1 = DownBlock(in_channels, base_channels[0], use_attention=use_attention)
self.down2 = DownBlock(base_channels[0], base_channels[1], use_attention=use_attention)
self.down3 = DownBlock(base_channels[1], base_channels[2], use_attention=use_attention)
self.down4 = DownBlock(base_channels[2], base_channels[3], use_attention=use_attention)
# Bottleneck
self.bottleneck = ConvBlock(base_channels[3], base_channels[3], use_attention=use_attention)
# Upsampling path
self.up1 = UpBlock(base_channels[3], base_channels[2], base_channels[2], use_attention=use_attention)
self.up2 = UpBlock(base_channels[2], base_channels[1], base_channels[1], use_attention=use_attention)
self.up3 = UpBlock(base_channels[1], base_channels[0], base_channels[0], use_attention=use_attention)
self.up4 = ConvBlock(base_channels[0], out_channels, use_attention=False)
def forward(self, x, t=None):
# Downsampling
x1, skip1 = self.down1(x) # Store skip connection here
x2, skip2 = self.down2(x1) # Store skip connection here
x3, skip3 = self.down3(x2) # Store skip connection here
x4, skip4 = self.down4(x3) # Store skip connection here
# Bottleneck
bottleneck = self.bottleneck(x4)
# Incorporate timestep embedding (add or concatenate it, depending on design)
if t is not None:
timestep_embed = t.squeeze(1)
timestep_embed = self.timestep_embed_proj(timestep_embed)
_, _, h, w = bottleneck.shape
timestep_embed = timestep_embed.unsqueeze(-1).unsqueeze(-1)
timestep_embed = timestep_embed.repeat(1, 1, h, w)
bottleneck = bottleneck + timestep_embed
# Upsampling
x = self.up1(bottleneck, skip4) # Use skip4 as input to up1
x = self.up2(x, skip3) # Use skip3 as input to up2
x = self.up3(x, skip2) # Use skip2 as input to up3
x = self.up4(x) # No skip connection for the final layer
# Before returning x, apply an upsampling operation (if needed):
x = F.interpolate(x, size=(img_size, img_size), mode='bilinear', align_corners=False)
return x
I use this to initialize the model.
unet = UNetWithAttention(in_channels=6, out_channels=3,
base_channels=[64, 128, 256, 512],
position_encoding_dim=position_encoding_dim,
timestep_dim=1,
use_attention=True) # Provide value here
unet.to(device)
This is my timestep encoding function.
def positional_encoding(t, enc_dim):
"""Encode position information with a sinusoid."""
inv_freq = 1.0 / (10000 ** (torch.arange(0, enc_dim, 2).float() / enc_dim)).to(t.device)
pos_enc_a = torch.sin(t.unsqueeze(-1) * inv_freq) # Use broadcasting
pos_enc_b = torch.cos(t.unsqueeze(-1) * inv_freq) # Use broadcasting
pos_enc = torch.cat([pos_enc_a, pos_enc_b], dim=-1)
return pos_enc
I use this to prepare the data, and my position_encoding_dim is 256.
def prepare_data(input_image, target_image, device=device):
batch_size = input_image.shape[0]
input_image = input_image.to(device)
target_image = target_image.to(device)
t = torch.randint(low=0, high=noise_steps, size=(batch_size,)).to(device)
x_t, noise = diffusion.forward_diffusion(target_image, t)
x_t = torch.cat((input_image, x_t), dim=1)
t = positional_encoding(t.unsqueeze(1), position_encoding_dim)
return x_t.to(device), t.to(device), noise.to(device)
I run this code to train the model.
for epoch in range(epochs):
start_time = time.time()
num_batches = len(train_loader)
print("\n" + f"Epoch {epoch + 1}/{epochs}" + "\n" + "_" * 10)
unet.train()
running_loss = 0.0
for batch_idx, (input_images, target_images) in enumerate(train_loader, start=0):
x_t, t, noise = prepare_data(input_images, target_images)
outputs = unet(x=x_t, t=t)
optimizer.zero_grad()
loss = criterion(outputs, noise)
loss.backward()
optimizer.step()
I keep getting this error:
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-25-1c932665f6dc> in <cell line: 0>()
9 for batch_idx, (input_images, target_images) in enumerate(train_loader, start=0):
10 x_t, t, noise = prepare_data(input_images, target_images)
---> 11 outputs = unet(x=x_t, t=t)
12 optimizer.zero_grad()
13 loss = criterion(outputs, noise)
11 frames
<ipython-input-16-2b9fa24bdc2f> in forward(self, x)
73
74 # Add the residual connection
---> 75 x = x + residual
76 return x
77
RuntimeError: The size of tensor a (64) must match the size of tensor b (6) at non-singleton dimension 1
I don't know how to fix it.
I added print statements to get the output of the model at different points so I can find where the problem is, but I have not been able to pinpoint it still. How can I fix it, please?
Share Improve this question edited Feb 14 at 10:05 teetee.py asked Feb 11 at 6:48 teetee.pyteetee.py 113 bronze badges 2- 2 Please add the full error traceback to your question. – Klaus D. Commented Feb 11 at 7:04
- I have added the full traceback. Thanks. – teetee.py Commented Feb 14 at 10:05
2 Answers
Reset to default 0maybe you def prepare_data() does not working ? like the code " x_t, noise = diffusion.forward_diffusion(target_image, t)" diffusion function not normal operation, then x_t variable is not a good values. Lead to later matrix size mapping error.
To use a residual network block, the input tensor has to be the same shape as the output otherwise you won't be able to add them as you are seeing. In your case the convolutional components in your first ConvBlock
change the number of channels from 6 to 64, which gives the error you see.
Within, e.g., the ResNet
available in torchvision, for each residual layer, if the input and output channels sizes are not going to match, it adds a downsample
(in this case another convolutional layer with a 1x1 kernel size) to the block to make the shape of the input match that of the output (see here). You'll need to add similar "downsampling" (although, despite the name you'd actually be upsampling the input)!
本文标签:
版权声明:本文标题:python - How can I resolve "RuntimeError: The size of tensor a (64) must match the size of tensor b (6) at non-singleto 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.betaflare.com/web/1741673955a2391771.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论