admin管理员组文章数量:1295268
Please help me fix this:
import os
from pinecone import Pinecone, ServerlessSpec
from langchain.vectorstores import Pinecone as PineconeLangchain
os.environ["PINECONE_API_KEY"] = PINECONE_API_KEY
pc = Pinecone(api_key=PINECONE_API_KEY)
index_name = "medchat"
if index_name not in pc.list_indexes().names():
pc.create_index(
name=index_name,
dimension=384,
metric="cosine",
spec=ServerlessSpec(
cloud="aws",
region=PINECONE_API_ENV
)
)
index = pc.Index(index_name)
docsearch = PineconeLangchain.from_existing_index(index_name, embeddings)
qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=docsearch.as_retriever(search_kwargs={'k': 2}),
return_source_documents=True,
chain_type_kwargs=chain_type_kwargs
)
Error:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-33-f1e2e49d4e0a> in <cell line: 0>()
28
29
---> 30 docsearch = PineconeLangchain.from_existing_index(index_name, embeddings)
31
32
2 frames
/usr/local/lib/python3.11/dist-packages/langchain_community/vectorstores/pinecone.py in __init__(self, index, embedding, text_key, namespace, distance_strategy)
71 )
72 if not isinstance(index, pinecone.Index):
---> 73 raise ValueError(
74 f"client should be an instance of pinecone.Index, " f"got {type(index)}"
75 )
ValueError: client should be an instance of pinecone.Index, got <class 'pinecone.data.index.Index'>
The code was working correctly 2~3 weeks ago, but I checked today and this error was persistently coming up. I can see the problem is in these bits:
index = pc.Index(index_name)
docsearch = PineconeLangchain.from_existing_index(index_name, embeddings)
What's the problem?
Please help me fix this:
import os
from pinecone import Pinecone, ServerlessSpec
from langchain.vectorstores import Pinecone as PineconeLangchain
os.environ["PINECONE_API_KEY"] = PINECONE_API_KEY
pc = Pinecone(api_key=PINECONE_API_KEY)
index_name = "medchat"
if index_name not in pc.list_indexes().names():
pc.create_index(
name=index_name,
dimension=384,
metric="cosine",
spec=ServerlessSpec(
cloud="aws",
region=PINECONE_API_ENV
)
)
index = pc.Index(index_name)
docsearch = PineconeLangchain.from_existing_index(index_name, embeddings)
qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=docsearch.as_retriever(search_kwargs={'k': 2}),
return_source_documents=True,
chain_type_kwargs=chain_type_kwargs
)
Error:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-33-f1e2e49d4e0a> in <cell line: 0>()
28
29
---> 30 docsearch = PineconeLangchain.from_existing_index(index_name, embeddings)
31
32
2 frames
/usr/local/lib/python3.11/dist-packages/langchain_community/vectorstores/pinecone.py in __init__(self, index, embedding, text_key, namespace, distance_strategy)
71 )
72 if not isinstance(index, pinecone.Index):
---> 73 raise ValueError(
74 f"client should be an instance of pinecone.Index, " f"got {type(index)}"
75 )
ValueError: client should be an instance of pinecone.Index, got <class 'pinecone.data.index.Index'>
The code was working correctly 2~3 weeks ago, but I checked today and this error was persistently coming up. I can see the problem is in these bits:
index = pc.Index(index_name)
docsearch = PineconeLangchain.from_existing_index(index_name, embeddings)
What's the problem?
Share edited Feb 12 at 8:21 mkrieger1 23.3k7 gold badges64 silver badges81 bronze badges asked Feb 12 at 8:17 PkunPkun 111 bronze badge1 Answer
Reset to default 0Just had this problem myself. It seems that Pinecone has updated its data structures and Langchain is yet to update theirs to match.
The answer seems to be to use pip install langchain_pinecone and then create a PineconeVectorStore instead of the langchain.vectorstores option.
Tutorial from Pinecone can be found here
Some example code:
from pinecone import Pinecone
from langchain_pinecone import PineconeVectorStore
# Same as your example
os.environ["PINECONE_API_KEY"] = PINECONE_API_KEY
pc = Pinecone(api_key=PINECONE_API_KEY)
index_name = "medchat"
if index_name not in pc.list_indexes().names():
pc.create_index(
name=index_name,
dimension=384,
metric="cosine",
spec=ServerlessSpec(
cloud="aws",
region=PINECONE_API_ENV
)
)
index = pc.Index(index_name)
Then choose a different vectorstore Note1: this uses the pinecone apikey again - must call up a pinecone instantiation from scratch. Note2: You've not said how you're creating your embeddings so I'm just copying your code here but i've tried this on lanchain's OpenAIEmbeddings
docsearch = PineconeVectorStore(pinecone_api_key = PINECONE_API_KEY, index_name=index_name, embedding=embeddings)
And then this is the same as your code
qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=docsearch.as_retriever(search_kwargs={'k': 2}),
return_source_documents=True,
chain_type_kwargs=chain_type_kwargs
)
This worked for me to remove the error
本文标签:
版权声明:本文标题:python - ValueError: client should be an instance of pinecone.Index, got <class 'pinecone.data.index.Index 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.betaflare.com/web/1741615018a2388476.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论