admin管理员组

文章数量:1295268

Please help me fix this:

import os
from pinecone import Pinecone, ServerlessSpec
from langchain.vectorstores import Pinecone as PineconeLangchain


os.environ["PINECONE_API_KEY"] = PINECONE_API_KEY


pc = Pinecone(api_key=PINECONE_API_KEY)


index_name = "medchat"


if index_name not in pc.list_indexes().names():
    pc.create_index(
        name=index_name,
        dimension=384,
        metric="cosine",
        spec=ServerlessSpec(
            cloud="aws",
            region=PINECONE_API_ENV
        )
    )


index = pc.Index(index_name)


docsearch = PineconeLangchain.from_existing_index(index_name, embeddings)


qa = RetrievalQA.from_chain_type(
    llm=llm,
    chain_type="stuff",
    retriever=docsearch.as_retriever(search_kwargs={'k': 2}),
    return_source_documents=True,
    chain_type_kwargs=chain_type_kwargs
)

Error:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-33-f1e2e49d4e0a> in <cell line: 0>()
     28 
     29 
---> 30 docsearch = PineconeLangchain.from_existing_index(index_name, embeddings)
     31 
     32 

2 frames
/usr/local/lib/python3.11/dist-packages/langchain_community/vectorstores/pinecone.py in __init__(self, index, embedding, text_key, namespace, distance_strategy)
     71             )
     72         if not isinstance(index, pinecone.Index):
---> 73             raise ValueError(
     74                 f"client should be an instance of pinecone.Index, " f"got {type(index)}"
     75             )

ValueError: client should be an instance of pinecone.Index, got <class 'pinecone.data.index.Index'>

The code was working correctly 2~3 weeks ago, but I checked today and this error was persistently coming up. I can see the problem is in these bits:

index = pc.Index(index_name)


docsearch = PineconeLangchain.from_existing_index(index_name, embeddings)

What's the problem?

Please help me fix this:

import os
from pinecone import Pinecone, ServerlessSpec
from langchain.vectorstores import Pinecone as PineconeLangchain


os.environ["PINECONE_API_KEY"] = PINECONE_API_KEY


pc = Pinecone(api_key=PINECONE_API_KEY)


index_name = "medchat"


if index_name not in pc.list_indexes().names():
    pc.create_index(
        name=index_name,
        dimension=384,
        metric="cosine",
        spec=ServerlessSpec(
            cloud="aws",
            region=PINECONE_API_ENV
        )
    )


index = pc.Index(index_name)


docsearch = PineconeLangchain.from_existing_index(index_name, embeddings)


qa = RetrievalQA.from_chain_type(
    llm=llm,
    chain_type="stuff",
    retriever=docsearch.as_retriever(search_kwargs={'k': 2}),
    return_source_documents=True,
    chain_type_kwargs=chain_type_kwargs
)

Error:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-33-f1e2e49d4e0a> in <cell line: 0>()
     28 
     29 
---> 30 docsearch = PineconeLangchain.from_existing_index(index_name, embeddings)
     31 
     32 

2 frames
/usr/local/lib/python3.11/dist-packages/langchain_community/vectorstores/pinecone.py in __init__(self, index, embedding, text_key, namespace, distance_strategy)
     71             )
     72         if not isinstance(index, pinecone.Index):
---> 73             raise ValueError(
     74                 f"client should be an instance of pinecone.Index, " f"got {type(index)}"
     75             )

ValueError: client should be an instance of pinecone.Index, got <class 'pinecone.data.index.Index'>

The code was working correctly 2~3 weeks ago, but I checked today and this error was persistently coming up. I can see the problem is in these bits:

index = pc.Index(index_name)


docsearch = PineconeLangchain.from_existing_index(index_name, embeddings)

What's the problem?

Share edited Feb 12 at 8:21 mkrieger1 23.3k7 gold badges64 silver badges81 bronze badges asked Feb 12 at 8:17 PkunPkun 111 bronze badge
Add a comment  | 

1 Answer 1

Reset to default 0

Just had this problem myself. It seems that Pinecone has updated its data structures and Langchain is yet to update theirs to match.

The answer seems to be to use pip install langchain_pinecone and then create a PineconeVectorStore instead of the langchain.vectorstores option.

Tutorial from Pinecone can be found here

Some example code:

from pinecone import Pinecone
from langchain_pinecone import PineconeVectorStore

# Same as your example

os.environ["PINECONE_API_KEY"] = PINECONE_API_KEY


pc = Pinecone(api_key=PINECONE_API_KEY)


index_name = "medchat"


if index_name not in pc.list_indexes().names():
    pc.create_index(
        name=index_name,
        dimension=384,
        metric="cosine",
        spec=ServerlessSpec(
            cloud="aws",
            region=PINECONE_API_ENV
        )
    )


index = pc.Index(index_name)

Then choose a different vectorstore Note1: this uses the pinecone apikey again - must call up a pinecone instantiation from scratch. Note2: You've not said how you're creating your embeddings so I'm just copying your code here but i've tried this on lanchain's OpenAIEmbeddings

docsearch = PineconeVectorStore(pinecone_api_key = PINECONE_API_KEY, index_name=index_name, embedding=embeddings)

And then this is the same as your code

qa = RetrievalQA.from_chain_type(
    llm=llm,
    chain_type="stuff",
    retriever=docsearch.as_retriever(search_kwargs={'k': 2}),
    return_source_documents=True,
    chain_type_kwargs=chain_type_kwargs
)

This worked for me to remove the error

本文标签: