admin管理员组文章数量:1131675
I have a terra::rast()
stack of continuous data, which I classify to n classes, convert to factors and plot on a discrete scale.
But when the first raster does not have all the factors present that some of the other rasters do (e.g. only 3 classification values instead of the whole set of 10, converted to factors), the plot goes a bit haywire.
I am looking for a way to inform the rast stack (or plot) that the levels of the whole stack are min - max of the the stack, but some layers may have less.
Interestingly, if the 1st layer has all classes/factors possible then the subsequent ones are ok and the plot is fine.
# dummy data
library(terra)
r1 <- rast(nrows = 10, ncols = 10, xmin = 0, xmax = 10, ymin = 0, ymax = 10)
r1[] <- runif(ncell(r1), min = 1, max = 5) # Random values between 1 and 5
r2 <- rast(nrows = 10, ncols = 10, xmin = 0, xmax = 10, ymin = 0, ymax = 10)
r2[] <- runif(ncell(r2), min = 1, max = 5)
# Combine rasters into a stack
s <- c(r1/r1, r1/r2, r2/r1, r2/r2)
names(s) <- c("r1/r1", "r1/r2", "r2/r1", "r2/r2")
# Reclassify the raster stack
# Define reclassification matrix
m_rc <- matrix(c(0, 0.5, 1,
0.5, 0.9, 2,
0.9, 1.1, 3,
1.1, 2, 4,
2, max(global(s, max, na.rm=T)$max), 5),
ncol = 3, byrow = TRUE)
# Apply reclassification
s_r <- classify(s, m_rc)
# Convert reclassified raster to factor for categorical plotting
s_r_f <- as.factor(s_r)
# Step 3: Plot using ggplot2 and tidyterra with custom legend labels
ggplot() +
geom_spatraster(data = s_r_f) +
facet_wrap(~lyr, nrow = 2) + # Separate plots for each layer
scale_fill_manual(
values = c("blue","lightblue" , "white", "yellow", "red"), # Assign custom colors
na.value = "transparent", # Transparent for NA values
) +
labs(
title = "Reclassified Raster Stack",
labels = c("0 - 0.5","0.5 - 0.9","0.9 - 1.1","1.1 - 2","> 2"),
fill = "Class"
) +
theme_minimal()
I have a terra::rast()
stack of continuous data, which I classify to n classes, convert to factors and plot on a discrete scale.
But when the first raster does not have all the factors present that some of the other rasters do (e.g. only 3 classification values instead of the whole set of 10, converted to factors), the plot goes a bit haywire.
I am looking for a way to inform the rast stack (or plot) that the levels of the whole stack are min - max of the the stack, but some layers may have less.
Interestingly, if the 1st layer has all classes/factors possible then the subsequent ones are ok and the plot is fine.
# dummy data
library(terra)
r1 <- rast(nrows = 10, ncols = 10, xmin = 0, xmax = 10, ymin = 0, ymax = 10)
r1[] <- runif(ncell(r1), min = 1, max = 5) # Random values between 1 and 5
r2 <- rast(nrows = 10, ncols = 10, xmin = 0, xmax = 10, ymin = 0, ymax = 10)
r2[] <- runif(ncell(r2), min = 1, max = 5)
# Combine rasters into a stack
s <- c(r1/r1, r1/r2, r2/r1, r2/r2)
names(s) <- c("r1/r1", "r1/r2", "r2/r1", "r2/r2")
# Reclassify the raster stack
# Define reclassification matrix
m_rc <- matrix(c(0, 0.5, 1,
0.5, 0.9, 2,
0.9, 1.1, 3,
1.1, 2, 4,
2, max(global(s, max, na.rm=T)$max), 5),
ncol = 3, byrow = TRUE)
# Apply reclassification
s_r <- classify(s, m_rc)
# Convert reclassified raster to factor for categorical plotting
s_r_f <- as.factor(s_r)
# Step 3: Plot using ggplot2 and tidyterra with custom legend labels
ggplot() +
geom_spatraster(data = s_r_f) +
facet_wrap(~lyr, nrow = 2) + # Separate plots for each layer
scale_fill_manual(
values = c("blue","lightblue" , "white", "yellow", "red"), # Assign custom colors
na.value = "transparent", # Transparent for NA values
) +
labs(
title = "Reclassified Raster Stack",
labels = c("0 - 0.5","0.5 - 0.9","0.9 - 1.1","1.1 - 2","> 2"),
fill = "Class"
) +
theme_minimal()
Share
Improve this question
edited Jan 8 at 19:21
Robert Hijmans
46.6k4 gold badges59 silver badges72 bronze badges
asked Jan 8 at 17:09
SamSam
1,46215 silver badges31 bronze badges
2 Answers
Reset to default 4That should be improved a bit in the package, but right now you can do this:
# set the same levels to all layers
x <- categories(s_r_f, 0, levels(s_r_f)[[2]])
panel(x, all_levels=TRUE, col = c("blue","lightblue", "white", "yellow", "red"), main=1:4)
With the development version of terra (version 1.8-9) you can now do
panel(s_r_f, col = c("blue","lightblue", "white", "yellow", "red"))
And for use with tidyterra and ggplot you can first use combineLevels
x <- combineLevels(s_r_f)
library(tidyterra)
library(ggplot2)
ggplot() +
geom_spatraster(data = x) +
facet_wrap(~lyr, nrow = 2) + # Separate plots for each layer
scale_fill_manual(
values = c("blue","lightblue" , "white", "yellow", "red"), # Assign custom colors
na.value = "transparent", # Transparent for NA values
) +
labs(
title = "Reclassified Raster Stack",
labels = c("0 - 0.5","0.5 - 0.9","0.9 - 1.1","1.1 - 2","> 2"),
fill = "Class"
) +
theme_minimal()
On top of Robert's solution, that is perfectly fine, see how this can be controlled with some options of ggplot
(see also ggplot2 stacked bar not ordering by manually-defined factor order).
Basically, inside scale_fill_manual
you can assign manually the color with a given value using a pair value-color in values
and change the default oder using breaks
. I also recoded the values on the legend, as I assumed that was your intention with this line:
labels = c("0 - 0.5","0.5 - 0.9","0.9 - 1.1","1.1 - 2","> 2"),
See the full reprex:
# dummy data
library(terra)
#> terra 1.8.5
library(ggplot2)
library(tidyterra)
#>
#> Attaching package: 'tidyterra'
#> The following object is masked from 'package:stats':
#>
#> filter
set.seed(1234)
r1 <- rast(nrows = 10, ncols = 10, xmin = 0, xmax = 10, ymin = 0, ymax = 10)
r1[] <- runif(ncell(r1), min = 1, max = 5) # Random values between 1 and 5
r2 <- rast(nrows = 10, ncols = 10, xmin = 0, xmax = 10, ymin = 0, ymax = 10)
r2[] <- runif(ncell(r2), min = 1, max = 5)
# Combine rasters into a stack
s <- c(r1 / r1, r1 / r2, r2 / r1, r2 / r2)
names(s) <- c("r1/r1", "r1/r2", "r2/r1", "r2/r2")
# Reclassify the raster stack
# Define reclassification matrix
m_rc <- matrix(
c(
0, 0.5, 1,
0.5, 0.9, 2,
0.9, 1.1, 3,
1.1, 2, 4,
2, max(global(s, max, na.rm = T)$max), 5
),
ncol = 3, byrow = TRUE
)
# Apply reclassification
s_r <- classify(s, m_rc)
# Convert reclassified raster to factor for categorical plotting
s_r_f <- as.factor(s_r)
# Step 3: Plot using ggplot2 and tidyterra with custom legend labels
ggplot() +
geom_spatraster(data = s_r_f) +
facet_wrap(~lyr, nrow = 2) + # Separate plots for each layer
scale_fill_manual(
# Step 1: Identify color with values by name
values = c(
"1" = "blue", "2" = "lightblue", "3" = "white",
"4" = "yellow", "5" = "red"
), # Assign custom colors
# Step 2: Order the values in legend
breaks = c("1", "2", "3", "4", "5"),
# Step 3 (extra) Rename values in legend
labels = c("0 - 0.5", "0.5 - 0.9", "0.9 - 1.1", "1.1 - 2", "> 2"),
na.value = "transparent", # Transparent for NA values
) +
labs(
title = "Reclassified Raster Stack",
fill = "Class"
) +
theme_minimal()
Plot Robert's answer for comparison (same plot):
# For comparison with Robert's answer
# set the same levels to all layers
x <- categories(s_r_f, layer = 0, value = levels(s_r_f)[[2]])
panel(x, all_levels = TRUE, col = c(
"blue", "lightblue", "white",
"yellow", "red"
), main = 1:4)
Created on 2025-01-09 with reprex v2.1.1
Session infosessioninfo::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.4.2 (2024-10-31)
#> os Ubuntu 20.04.6 LTS
#> system x86_64, linux-gnu
#> ui X11
#> language (EN)
#> collate C.UTF-8
#> ctype C.UTF-8
#> tz UTC
#> date 2025-01-09
#> pandoc 3.1.11 @ /usr/lib/rstudio-server/bin/quarto/bin/tools/ (via rmarkdown)
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date (UTC) lib source
#> class 7.3-22 2023-05-03 [2] CRAN (R 4.4.1)
#> classInt 0.4-10 2023-09-05 [1] RSPM (R 4.4.0)
#> cli 3.6.3 2024-06-21 [1] RSPM (R 4.4.0)
#> codetools 0.2-20 2024-03-31 [2] CRAN (R 4.4.1)
#> colorspace 2.1-1 2024-07-26 [1] RSPM (R 4.4.0)
#> curl 6.1.0 2025-01-06 [1] RSPM (R 4.4.0)
#> data.table 1.16.4 2024-12-06 [1] RSPM (R 4.4.0)
#> DBI 1.2.3 2024-06-02 [1] RSPM (R 4.4.0)
#> digest 0.6.37 2024-08-19 [1] RSPM (R 4.4.0)
#> dplyr 1.1.4 2023-11-17 [1] RSPM (R 4.4.0)
#> e1071 1.7-16 2024-09-16 [1] RSPM (R 4.4.0)
#> evaluate 1.0.1 2024-10-10 [1] RSPM (R 4.4.0)
#> farver 2.1.2 2024-05-13 [1] RSPM (R 4.4.0)
#> fastmap 1.2.0 2024-05-15 [1] RSPM (R 4.4.0)
#> fs 1.6.5 2024-10-30 [1] RSPM (R 4.4.0)
#> generics 0.1.3 2022-07-05 [1] RSPM (R 4.4.0)
#> ggplot2 * 3.5.1 2024-04-23 [1] RSPM (R 4.4.0)
#> glue 1.8.0 2024-09-30 [1] RSPM (R 4.4.0)
#> gtable 0.3.6 2024-10-25 [1] RSPM (R 4.4.0)
#> htmltools 0.5.8.1 2024-04-04 [1] RSPM (R 4.4.0)
#> KernSmooth 2.23-24 2024-05-17 [2] CRAN (R 4.4.1)
#> knitr 1.49 2024-11-08 [1] RSPM (R 4.4.0)
#> lifecycle 1.0.4 2023-11-07 [1] RSPM (R 4.4.0)
#> magrittr 2.0.3 2022-03-30 [1] RSPM (R 4.4.0)
#> munsell 0.5.1 2024-04-01 [1] RSPM (R 4.4.0)
#> pillar 1.10.1 2025-01-07 [1] RSPM (R 4.4.0)
#> pkgconfig 2.0.3 2019-09-22 [1] RSPM (R 4.4.0)
#> proxy 0.4-27 2022-06-09 [1] RSPM (R 4.4.0)
#> purrr 1.0.2 2023-08-10 [1] RSPM (R 4.4.0)
#> R6 2.5.1 2021-08-19 [1] RSPM (R 4.4.0)
#> Rcpp 1.0.13-1 2024-11-02 [1] RSPM (R 4.4.0)
#> reprex 2.1.1 2024-07-06 [1] RSPM (R 4.4.0)
#> rlang 1.1.4 2024-06-04 [1] RSPM (R 4.4.0)
#> rmarkdown 2.29 2024-11-04 [1] RSPM (R 4.4.0)
#> rstudioapi 0.17.1 2024-10-22 [1] RSPM (R 4.4.0)
#> scales 1.3.0 2023-11-28 [1] RSPM (R 4.4.0)
#> sessioninfo 1.2.2 2021-12-06 [1] RSPM (R 4.4.0)
#> sf 1.0-19 2024-11-05 [1] RSPM (R 4.4.0)
#> terra * 1.8-5 2024-12-12 [1] RSPM (R 4.4.0)
#> tibble 3.2.1 2023-03-20 [1] RSPM (R 4.4.0)
#> tidyr 1.3.1 2024-01-24 [1] RSPM (R 4.4.0)
#> tidyselect 1.2.1 2024-03-11 [1] RSPM (R 4.4.0)
#> tidyterra * 0.6.1 2024-06-08 [1] RSPM (R 4.4.0)
#> units 0.8-5 2023-11-28 [1] RSPM (R 4.4.0)
#> vctrs 0.6.5 2023-12-01 [1] RSPM (R 4.4.0)
#> withr 3.0.2 2024-10-28 [1] RSPM (R 4.4.0)
#> xfun 0.50 2025-01-07 [1] RSPM (R 4.4.0)
#> xml2 1.3.6 2023-12-04 [1] RSPM (R 4.4.0)
#> yaml 2.3.10 2024-07-26 [1] RSPM (R 4.4.0)
#>
#> [1] /cloud/lib/x86_64-pc-linux-gnu-library/4.4
#> [2] /opt/R/4.4.1/lib/R/library
#> [3] /opt/R/4.4.2/lib/R/library
#>
#> ──────────────────────────────────────────────────────────────────────────────
本文标签:
版权声明:本文标题:r - How to set factor levels in a rast stack, using terra, when different levels exist in each layer - Stack Overflow 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.betaflare.com/web/1736700125a1948382.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论