admin管理员组

文章数量:1122849

《网络天才》(akinator),是一款在线猜谜类网页游戏,游戏将以阿拉伯神灯精灵阿拉丁出题方式展开,让你通过问题才出全部的人的心里想的人物,受到了不少玩家的喜爱。

游戏玩法:

玩家要想出一个人物,并回答问题,他就会猜到你想的人物。

有什么它猜不到的人物都截图来分享吧。

游戏原理:

此类应用的大致流程都是:用户输入一段话(不一定只是单词)->后端语义引擎对用户输入的语句进行语义解析->推断用户最可能的意图->调用对应的知识库、应用、计算引擎->返回结果给用户。

1、最初级的实现方法:关键词匹配

建一个关键词词库,对用户输入的语句进行关键词匹配,然后调用对应的知识库。

此种方式入门门槛很低,基本上是个程序员都能实现,例如现在微信公众平台的智能回复、诸多网站的敏感词过滤就是此类。

但此种方式存在诸多问题,例如:

a、由于是关键词匹配,如果用户输入的语句中出现多个关键词,此时由于涉及关键词权重(与知识库的关键词对比)等等问题,此时关键词匹配的方法就不擅长了

b、不存在对用户输入语句语义的理解,导致会出现答非所问的现象。当然在产品上对回答不上的问题就采用卖萌的方式来规避掉。

c、基本上无自学习能力,规则只能完全由人工维护,且规则基本是固定死的。

d、性能、扩展性较差。还是上面的一句话中包含多个关键词的例子,采用普通程序语言来做关键词匹配,性能奇差。即便采用一些文本处理的算法来做(例如Double-array trie tree),也很难满足大规模场景需求。

2、稍微高级点的实现方法:基于搜索引擎、文本挖掘、自然语言处理(NLP)等技术来实现

相对于1的关键词匹配,此种实现方法要解决的核心的问题可以大致理解为:根据一段短文本(例如用户问的一句话)的语义,推测出用户最可能的意图,然后从海量知识库内容中找出相似度最高的结果。

具体技术实现就不细说了。举一个很粗糙的例子来简单说一下此种实现方法处理的思路(不严谨,只是为了说明思路)。

假如用户问:北京后天的温度是多少度?

如果采用纯搜索引擎的思路(基于文本挖掘、NLP的思路不尽相同,但可参考此思路),此时实际流程上分成几步处理:

1、对输入语句分词,得到北京、后天、温度3个关键词。分词时候利用了预先建好的行业词库,“北京”符合预先建好的城市库、“后天”符合日期库、“温度”符合气象库

2、将上述分词结果与规则库按照一定算法做匹配,得出匹配度最高的规则。假定在规则库中有一条天气的规则:城市库+日期库+气象库,从而大致可以推测用户可能想问某个地方某天的天气。

3、对语义做具体解析,知道城市是北京,日期是后天,要获取的知识是天气预报

4、调用第三方的天气接口,例如中国天气网-专业天气预报、气象服务门户 的数据

5、将结果返回给用户

本文标签: 中文版在线天才网络旗舰版