admin管理员组

文章数量:1122847

7、Https加密原理。

加密算法的类型基本上分为了两种:

  • 对称加密,加密用的密钥和解密用的密钥是同一个,比较有代表性的就是 AES 加密算法;
  • 非对称加密,加密用的密钥称为公钥,解密用的密钥称为私钥,经常使用到的 RSA 加密算法就是非对称加密的;

此外,还有Hash加密算法

HASH算法:MD5, SHA1, SHA256

相比较对称加密而言,非对称加密安全性更高,但是加解密耗费的时间更长,速度慢。

想了解更多加密算法请点击这里

HTTPS = HTTP + SSL,HTTPS 的加密就是在 SSL 中完成的。

这就要从 CA 证书讲起了。CA 证书其实就是数字证书,是由 CA 机构颁发的。至于 CA 机构的权威性,那么是毋庸置疑的,所有人都是信任它的。CA 证书内一般会包含以下内容:

  • 证书的颁发机构、版本
  • 证书的使用者
  • 证书的公钥
  • 证书的有效时间
  • 证书的数字签名 Hash 值和签名 Hash 算法
客户端如何校验 CA 证书?

CA 证书中的 Hash 值,其实是用证书的私钥进行加密后的值(证书的私钥不在 CA 证书中)。然后客户端得到证书后,利用证书中的公钥去解密该 Hash 值,得到 Hash-a ;然后再利用证书内的签名 Hash 算法去生成一个 Hash-b 。最后比较 Hash-a 和 Hash-b 这两个的值。如果相等,那么证明了该证书是对的,服务端是可以被信任的;如果不相等,那么就说明该证书是错误的,可能被篡改了,浏览器会给出相关提示,无法建立起 HTTPS 连接。除此之外,还会校验 CA 证书的有效时间和域名匹配等。

HTTPS 中的 SSL 握手建立过程

假设现在有客户端 A 和服务器 B :

  • 1、首先,客户端 A 访问服务器 B ,比如我们用浏览器打开一个网页 www.baidu ,这时,浏览器就是客户端 A ,百度的服务器就是服务器 B 了。这时候客户端 A 会生成一个随机数1,把随机数1 、自己支持的 SSL 版本号以及加密算法等这些信息告诉服务器 B 。
  • 2、服务器 B 知道这些信息后,然后确认一下双方的加密算法,然后服务端也生成一个随机数 B ,并将随机数 B 和 CA 颁发给自己的证书一同返回给客户端 A 。
  • 3、客户端 A 得到 CA 证书后,会去校验该 CA 证书的有效性,校验方法在上面已经说过了。校验通过后,客户端生成一个随机数3 ,然后用证书中的公钥加密随机数3 并传输给服务端 B 。
  • 4、服务端 B 得到加密后的随机数3,然后利用私钥进行解密,得到真正的随机数3。
  • 5、最后,客户端 A 和服务端 B 都有随机数1、随机数2、随机数3,然后双方利用这三个随机数生成一个对话密钥。之后传输内容就是利用对话密钥来进行加解密了。这时就是利用了对称加密,一般用的都是 AES 算法。
  • 6、客户端 A 通知服务端 B ,指明后面的通讯用对话密钥来完成,同时通知服务器 B 客户端 A 的握手过程结束。
  • 7、服务端 B 通知客户端 A,指明后面的通讯用对话密钥来完成,同时通知客户端 A 服务器 B 的握手过程结束。
  • 8、SSL 的握手部分结束,SSL 安全通道的数据通讯开始,客户端 A 和服务器 B 开始使用相同的对话密钥进行数据通讯。

简化如下:

  • 1、客户端和服务端建立 SSL 握手,客户端通过 CA 证书来确认服务端的身份;
  • 2、互相传递三个随机数,之后通过这随机数来生成一个密钥;
  • 3、互相确认密钥,然后握手结束;
  • 4、数据通讯开始,都使用同一个对话密钥来加解密;

可以发现,在 HTTPS 加密原理的过程中把对称加密和非对称加密都利用了起来。即利用了非对称加密安全性高的特点,又利用了对称加密速度快,效率高的好处。

需要更深的理解请点击这里

8、HTTPS 如何防范中间人攻击?

什么是中间人攻击?

当数据传输发生在一个设备(PC/手机)和网络服务器之间时,攻击者使用其技能和工具将自己置于两个端点之间并截获数据;尽管交谈的两方认为他们是在与对方交谈,但是实际上他们是在与干坏事的人交流,这便是中间人攻击。

有几种攻击方式?
  • 1、嗅探:

嗅探或数据包嗅探是一种用于捕获流进和流出系统/网络的数据包的技术。网络中的数据包嗅探就好像电话中的监听。

  • 2、数据包注入:

在这种技术中,攻击者会将恶意数据包注入常规数据中。这样用户便不会注意到文件/恶意软件,因为它们是合法通讯流的一部分。

  • 3、会话劫持:

在你登录进你的银行账户和退出登录这一段期间便称为一个会话。这些会话通常都是黑客的攻击目标,因为它们包含潜在的重要信息。在大多数案例中,黑客会潜伏在会话中,并最终控制它。

  • 4、SSL剥离:

在SSL剥离攻击中,攻击者使SSL/TLS连接剥落,随之协议便从安全的HTTPS变成了不安全的HTTP。

HTTPS 如何防范中间人攻击:

请见https加密原理。

9、有哪些响应码,分别都代表什么意思?

1** 信息,服务器收到请求,需要请求者继续执行操作

2** 成功,操作被成功接收并处理

3** 重定向,需要进一步的操作以完成请求

4** 客户端错误,请求包含语法错误或无法完成请求

5** 服务器错误,服务器在处理请求的过程中发生了错误

二、TCP/UDP (⭐⭐⭐)

1、为什么tcp要经过三次握手,四次挥手?

重要标志位

ACK : TCP协议规定,只有ACK=1时有效,也规定连接建立后所有发送的报文的ACK必须为1

SYN(SYNchronization) : 在连接建立时用来同步序号。当SYN=1而ACK=0时,表明这是一个连接请求报文。对方若同意建立连接,则应在响应报文中使SYN=1和ACK=1. 因此, SYN置1就表示这是一个连接请求或连接接受报文。

FIN (finis)即完,终结的意思, 用来释放一个连接。当 FIN = 1 时,表明此报文段的发送方的数据已经发送完毕,并要求释放连接。

三次握手、四次挥手过程
三次握手:

第一次握手:建立连接。客户端发送连接请求报文段,将SYN位置为1,Sequence Number为x;然后,客户端进入SYN_SEND状态,等待服务器的确认;

第二次握手:服务器收到SYN报文段。服务器收到客户端的SYN报文段,需要对这个SYN报文段进行确认,设置Acknowledgment Number为x+1(Sequence Number+1);同时,自己还要发送SYN请求信息,将SYN位置为1,Sequence Number为y;服务器端将上述所有信息放到一个报文段(即SYN+ACK报文段)中,一并发送给客户端,此时服务器进入SYN_RECV状态;

第三次握手:客户端收到服务器的SYN+ACK报文段。然后将Acknowledgment Number设置为y+1,向服务器发送ACK报文段,这个报文段发送完毕以后,客户端和服务器端都进入ESTABLISHED状态,完成TCP三次握手。

四次挥手:

第一次分手:主机1(可以使客户端,也可以是服务器端),设置Sequence Number和Acknowledgment Number,向主机2发送一个FIN报文段;此时,主机1进入FIN_WAIT_1状态;这表示主机1没有数据要发送给主机2了;

第二次分手:主机2收到了主机1发送的FIN报文段,向主机1回一个ACK报文段,Acknowledgment Number为Sequence Number加1;主机1进入FIN_WAIT_2状态;主机2告诉主机1,我“同意”你的关闭请求;

第三次分手:主机2向主机1发送FIN报文段,请求关闭连接,同时主机2进入LAST_ACK状态;

第四次分手:主机1收到主机2发送的FIN报文段,向主机2发送ACK报文段,然后主机1进入TIME_WAIT状态;主机2收到主机1的ACK报文段以后,就关闭连接;此时,主机1等待2MSL后依然没有收到回复,则证明Server端已正常关闭,那好,主机1也可以关闭连接了。

“三次握手”的目的是“为了防止已失效的连接请求报文段突然又传送到了服务端,因而产生错误”。主要目的防止server端一直等待,浪费资源。换句话说,即是为了保证服务端能收接受到客户端的信息并能做出正确的应答而进行前两次(第一次和第二次)握手,为了保证客户端能够接收到服务端的信息并能做出正确的应答而进行后两次(第二次和第三次)握手。

“四次挥手”原因是因为tcp是全双工模式,接收到FIN时意味将没有数据再发来,但是还是可以继续发送数据。

2、TCP可靠传输原理实现(滑动窗口)。

确认和重传:接收方收到报文后就会进行确认,发送方一段时间没有收到确认就会重传。

数据校验。

数据合理分片与排序,TCP会对数据进行分片,接收方会缓存为按序到达的数据,重新排序后再提交给应用层。

流程控制:当接收方来不及接收发送的数据时,则会提示发送方降低发送的速度,防止包丢失。

拥塞控制:当网络发生拥塞时,减少数据的发送。

关于滑动窗口、流量控制、拥塞控制实现原理请点击这里

3、Tcp和Udp的区别?

1、基于连接与无连接;

2、对系统资源的要求(TCP较多,UDP少);

3、UDP程序结构较简单;

4、流模式与数据报模式 ;

5、TCP保证数据正确性,UDP可能丢包;

6、TCP保证数据顺序,UDP不保证。

4、如何设计在 UDP 上层保证 UDP 的可靠性传输?

传输层无法保证数据的可靠传输,只能通过应用层来实现了。实现的方式可以参照tcp可靠性传输的方式。如不考虑拥塞处理,可靠UDP的简单设计如下:

  • 1、添加seq/ack机制,确保数据发送到对端
  • 2、添加发送和接收缓冲区,主要是用户超时重传。
  • 3、添加超时重传机制。

具体过程即是:送端发送数据时,生成一个随机seq=x,然后每一片按照数据大小分配seq。数据到达接收端后接收端放入缓存,并发送一个ack=x的包,表示对方已经收到了数据。发送端收到了ack包后,删除缓冲区对应的数据。时间到后,定时任务检查是否需要重传数据。

目前有如下开源程序利用udp实现了可靠的数据传输。分别为RUDP、RTP、UDT:

1、RUDP(Reliable User Datagram Protocol)

RUDP 提供一组数据服务质量增强机制,如拥塞控制的改进、重发机制及淡化服务器算法等。

2、RTP(Real Time Protocol)

RTP为数据提供了具有实时特征的端对端传送服务,如在组播或单播网络服务下的交互式视频音频或模拟数据。

3、UDT(UDP-based Data Transfer Protocol)

UDT的主要目的是支持高速广域网上的海量数据传输。

关于RUDP、RTP、UDT的更多介绍请查看此处

三、其它重要网络概念 (⭐⭐)

1、socket断线重连怎么实现,心跳机制又是怎样实现?

socket概念

套接字(socket)是通信的基石,是支持TCP/IP协议的网络通信的基本操作单元。它是网络通信过程中端点的抽象表示,包含进行网络通信必须的五种信息:连接使用的协议,本地主机的IP地址,本地进程的协议端口,远地主机的IP地址,远地进程的协议端口。

为了区别不同的应用程序进程和连接,许多计算机操作系统为应用程序与TCP/IP协议交互提供了套接字(Socket)接口。应 用层可以和传输层通过Socket接口,区分来自不同应用程序进程或网络连接的通信,实现数据传输的并发服务。

建立socket连接

建立Socket连接至少需要一对套接字,其中一个运行于客户端,称为ClientSocket ,另一个运行于服务器端,称为ServerSocket 。

套接字之间的连接过程分为三个步骤:服务器监听,客户端请求,连接确认。

  • 服务器监听:服务器端套接字并不定位具体的客户端套接字,而是处于等待连接的状态,实时监控网络状态,等待客户端的连接请求。
  • 客户端请求:指客户端的套接字提出连接请求,要连接的目标是服务器端的套接字。为此,客户端的套接字必须首先描述它要连接的服务器的套接字,指出服务器端- - 套接字的地址和端口号,然后就向服务器端套接字提出连接请求。

连接确认:当服务器端套接字监听到或者说接收到客户端套接字的连接请求时,就响应客户端套接字的请求,建立一个新的线程,把服务器端套接字的描述发 给客户端,一旦客户端确认了此描述,双方就正式建立连接。而服务器端套接字继续处于监听状态,继续接收其他客户端套接字的连接请求。

SOCKET连接与TCP连接

创建Socket连接时,可以指定使用的传输层协议,Socket可以支持不同的传输层协议(TCP或UDP),当使用TCP协议进行连接时,该Socket连接就是一个TCP连接。

Socket连接与HTTP连接

由于通常情况下Socket连接就是TCP连接,因此Socket连接一旦建立,通信双方即可开始相互发送数据内容,直到双方连接断开。但在实际网 络应用中,客户端到服务器之间的通信往往需要穿越多个中间节点,例如路由器、网关、防火墙等,大部分防火墙默认会关闭长时间处于非活跃状态的连接而导致 Socket 连接断连,因此需要通过轮询告诉网络,该连接处于活跃状态。

而HTTP连接使用的是“请求—响应”的方式,不仅在请求时需要先建立连接,而且需要客户端向服务器发出请求后,服务器端才能回复数据。

很多情况下,需要服务器端主动向客户端推送数据,保持客户端与服务器数据的实时与同步。此时若双方建立的是Socket连接,服务器就可以直接将数 据传送给客户端;若双方建立的是HTTP连接,则服务器需要等到客户端发送一次请求后才能将数据传回给客户端,因此,客户端定时向服务器端发送连接请求, 不仅可以保持在线,同时也是在“询问”服务器是否有新的数据,如果有就将数据传给客户端。TCP(Transmission Control Protocol) 传输控制协议

socket断线重连实现

正常连接断开客户端会给服务端发送一个fin包,服务端收到fin包后才会知道连接断开。 而断网断电时客户端无法发送fin包给服务端,所以服务端没办法检测到客户端已经短线。 为了缓解这个问题,服务端需要有个心跳逻辑,就是服务端检测到某个客户端多久没发送任何数据过来就认为客户端已经断开, 这需要客户端定时向服务端发送心跳数据维持连接。

心跳机制实现

长连接的实现:心跳机制,应用层协议大多都有HeartBeat机制,通常是客户端每隔一小段时间向服务器发送一个数据包,通知服务器自己仍然在线。并传输一些可能必要的数据。使用心跳包的典型协议是IM,比如QQ/MSN/飞信等协议

1、在TCP的机制里面,本身是存在有心跳包的机制的,也就是TCP的选项:SO_KEEPALIVE。 系统默认是设置的2小时的心跳频率。但是它检查不到机器断电、网线拔出、防火墙这些断线。 而且逻辑层处理断线可能也不是那么好处理。一般,如果只是用于保活还是可以的。通过使用TCP的KeepAlive机制(修改那个time参数),可以让连接每隔一小段时间就产生一些ack包,以降低被踢掉的风险,当然,这样的代价是额外的网络和CPU负担。

2、应用层心跳机制实现。

2、Cookie与Session的作用和原理。

  • Session是在服务端保存的一个数据结构,用来跟踪用户的状态,这个数据可以保存在集群、数据库、文件中。
  • Cookie是客户端保存用户信息的一种机制,用来记录用户的一些信息,也是实现Session的一种方式。
Session:

由于HTTP协议是无状态的协议,所以服务端需要记录用户的状态时,就需要用某种机制来识具体的用户,这个机制就是Session.典型的场景比如购物车,当你点击下单按钮时,由于HTTP协议无状态,所以并不知道是哪个用户操作的,所以服务端要为特定的用户创建了特定的Session,用用于标识这个用户,并且跟踪用户,这样才知道购物车里面有几本书。这个Session是保存在服务端的,有一个唯一标识。在服务端保存Session的方法很多,内存、数据库、文件都有。集群的时候也要考虑Session的转移,在大型的网站,一般会有专门的Session服务器集群,用来保存用户会话,这个时候 Session 信息都是放在内存的。

具体到Web中的Session指的就是用户在浏览某个网站时,从进入网站到浏览器关闭所经过的这段时间,也就是用户浏览这个网站所花费的时间。因此从上述的定义中我们可以看到,Session实际上是一个特定的时间概念。

当客户端访问服务器时,服务器根据需求设置Session,将会话信息保存在服务器上,同时将标示Session的SessionId传递给客户端浏览器,

浏览器将这个SessionId保存在内存中,我们称之为无过期时间的Cookie。浏览器关闭后,这个Cookie就会被清掉,它不会存在于用户的Cookie临时文件。

以后浏览器每次请求都会额外加上这个参数值,服务器会根据这个SessionId,就能取得客户端的数据信息。

如果客户端浏览器意外关闭,服务器保存的Session数据不是立即释放,此时数据还会存在,只要我们知道那个SessionId,就可以继续通过请求获得此Session的信息,因为此时后台的Session还存在,当然我们可以设置一个Session超时时间,一旦超过规定时间没有客户端请求时,服务器就会清除对应SessionId的Session信息。

Cookie

Cookie是由服务器端生成,发送给User-Agent(一般是web浏览器),浏览器会将Cookie的key/value保存到某个目录下的文本文件内,下次请求同一网站时就发送该Cookie给服务器(前提是浏览器设置为启用Cookie)。Cookie名称和值可以由服务器端开发自己定义,对于JSP而言也可以直接写入Sessionid,这样服务器可以知道该用户是否合法用户以及是否需要重新登录等。

3、IP报文中的内容。

版本:IP协议的版本,目前的IP协议版本号为4,下一代IP协议版本号为6。

首部长度:IP报头的长度。固定部分的长度(20字节)和可变部分的长度之和。共占4位。最大为1111,即10进制的15,代表IP报头的最大长度可以为15个32bits(4字节),也就是最长可为15*4=60字节,除去固定部分的长度20字节,可变部分的长度最大为40字节。

服务类型:Type Of Service。

总长度:IP报文的总长度。报头的长度和数据部分的长度之和。

标识:唯一的标识主机发送的每一分数据报。通常每发送一个报文,它的值加一。当IP报文长度超过传输网络的MTU(最大传输单元)时必须分片,这个标识字段的值被复制到所有数据分片的标识字段中,使得这些分片在达到最终目的地时可以依照标识字段的内容重新组成原先的数据。

标志:共3位。R、DF、MF三位。目前只有后两位有效,DF位:为1表示不分片,为0表示分片。MF:为1表示“更多的片”,为0表示这是最后一片。

片位移:本分片在原先数据报文中相对首位的偏移位。(需要再乘以8)

生存时间:IP报文所允许通过的路由器的最大数量。每经过一个路由器,TTL减1,当为0时,路由器将该数据报丢弃。TTL 字段是由发送端初始设置一个 8 bit字段.推荐的初始值由分配数字 RFC 指定,当前值为 64。发送 ICMP 回显应答时经常把 TTL 设为最大值 255。

协议:指出IP报文携带的数据使用的是那种协议,以便目的主机的IP层能知道要将数据报上交到哪个进程(不同的协议有专门不同的进程处理)。和端口号类似,此处采用协议号,TCP的协议号为6,UDP的协议号为17。ICMP的协议号为1,IGMP的协议号为2.

首部校验和:计算IP头部的校验和,检查IP报头的完整性。

源IP地址:标识IP数据报的源端设备。

目的IP地址:标识IP数据报的目的地址。

最后就是可变部分和数据部分。

四、常见网络流程机制 (⭐⭐)

1、浏览器输入地址到返回结果发生了什么?

总体来说分为以下几个过程:

1、DNS解析,此外还有DNSy优化(DNS缓存、DNS负载均衡)

2、TCP连接

3、发送HTTP请求

4、服务器处理请求并返回HTTP报文

5、浏览器解析渲染页面

6、连接结束

Web前端的本质

将信息快速并友好的展示给用户并能够与用户进行交互。

如何尽快的加载资源(网络优化)?

答案就是能不从网络中加载的资源就不从网络中加载,当我们合理使用缓存,将资源放在浏览器端,这是最快的方式。如果资源必须从网络中加载,则要考虑缩短连接时间,即DNS优化部分;减少响应内容大小,即对内容进行压缩。另一方面,如果加载的资源数比较少的话,也可以快速的响应用户。

操作系统(⭐⭐⭐)


1、操作系统如何管理内存的?

2、进程调度。

3、说下Linux进程和线程的区别。

进程和线程的主要差别在于它们是不同的操作系统资源管理方式。进程有独立的地址空间,一个进程崩溃后,在保护模式下不会对其它进程产生影响,而线程只是一个进程中的不同执行路径。线程有自己的堆栈和局部变量,但线程之间没有单独的地址空间,一个进程死掉就等于所有线程死掉,所以多进程的程序要比多线程的程序健壮,但在进程切换时,耗费资源较大,效率要差一些。但对于一些要求同时进行并且又要共享某些变量的并发操作,只能用线程,不能用进程。

  1. 简而言之,一个程序至少有一个进程,一个进程至少有一个线程。

  2. 线程的划分尺度小于进程,使得多线程程序的并发性高。

  3. 另外,进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。

  4. 线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。

  5. 从逻辑角度来看,多线程的意义在于一个应用程序中,有多个执行部分可以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程的调度和管理以及资源分配。这就是进程和线程的重要区别。

4、你能解释一下Linux的软链接和硬链接吗?

Linux链接分两种,一种被称为硬链接(Hard Link),另一种被称为符号链接(Symbolic Link)。默认情况下,ln命令产生硬链接。

硬连接

硬连接指通过索引节点来进行连接。在Linux的文件系统中,保存在磁盘分区中的文件不管是什么类型都给它分配一个编号,称为索引节点号(Inode Index)。在Linux中,多个文件名指向同一索引节点是存在的。一般这种连接就是硬连接。硬连接的作用是允许一个文件拥有多个有效路径名,这样用户就可以建立硬连接到重要文件,以防止“误删”的功能。其原因如上所述,因为对应该目录的索引节点有一个以上的连接。只删除一个连接并不影响索引节点本身和其它的连接,只有当最后一个连接被删除后,文件的数据块及目录的连接才会被释放。也就是说,文件真正删除的条件是与之相关的所有硬连接文件均被删除。

软连接

另外一种连接称之为符号连接(Symbolic Link),也叫软连接。软链接文件有类似于Windows的快捷方式。它实际上是一个特殊的文件。在符号连接中,文件实际上是一个文本文件,其中包含的有另一文件的位置信息。

5、安卓权限管理,为何在清单中注册权限,安卓APP就可以使用,反之不可以?

此题考查Android的权限管理在Android的安全架构中的作用。

Android 是一个权限分隔的操作系统,其中每个应用都有其独特的系统标识(Linux 用户 ID 和组 ID)。系统各部分也分隔为不同的标识。Linux 据此将不同的应用以及应用与系统分隔开来。

其他更详细的安全功能通过“权限”机制提供,此机制会限制特定进程可以执行的具体操作,并且根据 URI 权限授权临时访问特定的数据段。

Android 安全架构的中心设计点是:在默认情况下任何应用都没有权限执行对其他应用、操作系统或用户有不利影响的任何操作。这包括读取或写入用户的私有数据(例如联系人或电子邮件)、读取或写入其他应用程序的文件、执行网络访问、使设备保持唤醒状态等。

由于每个 Android 应用都是在进程沙盒中运行,因此应用必须显式共享资源和数据。它们的方法是声明需要哪些权限来获取基本沙盒未提供的额外功能。应用以静态方式声明它们需要的权限,然后 Android 系统提示用户同意。

数据库 (⭐)

1、数据库的四大特征,数据库的隔离级别?

事务(Transaction)是并发控制的基本单位。所谓的事务,它是一个操作序列,这些操作要么都执行,要么都不执行,它是一个不可分割的工作单位。例如,银行转账工作:从一个账号扣款并使另一个账号增款,这两个操作要么都执行,要么都不执行。所以,应该把它们看成一个事务。事务是数据库维护数据一致性的单位,在每个事务结束时,都能保持数据一致性。事务具有以下4个基本特征:

数据库的四大特征:

(1)原子性(Atomicity)

原子性是指事务包含的所有操作要么全部成功,要么全部失败回滚。

(2)一致性(Consistency)

一个事务执行之前和执行之后都必须处于一致性状态。

(3)隔离性(Isolation)

隔离性是当多个用户并发访问数据库时,比如操作同一张表时,数据库为每一个用户开启的事务,不能被其他事务的操作所干扰,多个并发事务之间要相互隔离。

(4)持久性(Durability)

持久性是指一个事务一旦被提交了,那么对数据库中的数据的改变就是永久性的。

数据库的隔离级别:

1)Serializable(串行化):可避免脏读、不可重复读、幻读的发生。

2)Repeatable read (可重复读):可避免脏读、不可重复读的发生。

3)Read committed (读已提交):可避免脏读的发生。

4)Read uncommitted (读未提交):最低级别,任何情况都无法保证。

2、数据库设计中常讲的三范式是指什么?

1)第一范式1NF(域的原子性)

如果数据库表中的所有字段值都是不可分解的原子值,就说明该数据库表满足了第一范式

2)第二范式2NF(表中除主键外的字段都完全依赖主键)

第二范式是在第一范式基础上建立的。第二范式有两个重点:(1)表中必须有主键;(2)其他非主属性必须完全依赖主键,不能只依赖主键的一部分(主要针对联合主键而言)。
3)第三范式3NF(表中除主键外的字段都完全直接依赖,不能是传递依赖)
不能是传递依赖,即不能存在:非主键列 A 依赖于非主键列 B,非主键列 B 依赖于主键的情况。第二范式和第三范式区分的关键点:2NF:非主键列是否完全依赖于主键,还是依赖于主键的一部分;3NF:非主键列是直接依赖于主键,还是直接依赖于非主键列。
数据结构和算法(⭐⭐⭐)

对于算法面试准备,无疑就是刷《剑指Offer》+ LeetCode 效果最佳。刷《剑指Offer》是为了建立全面的算法面试思维,打下坚实的基础,刷LeetCode则是为了不断强化与开阔我们自己的算法思想。这两块 CS-Notes 中已经实现地很完美了,建议大家将《剑指Offer》刷完,然后再至少刷100道LeetCode题目以上
1、剑指 Offer 题解

2、Leetcode 题解

很感谢您阅读这篇文章,希望您能将它分享给您的朋友或技术群,这对我意义重大。

最后

我这里整理了一份完整的学习思维以及Android开发知识大全PDF。

当然实践出真知,即使有了学习线路也要注重实践,学习过的内容只有结合实操才算是真正的掌握。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

很感谢您阅读这篇文章,希望您能将它分享给您的朋友或技术群,这对我意义重大。

最后

我这里整理了一份完整的学习思维以及Android开发知识大全PDF。

[外链图片转存中…(img-gEuDSZxJ-1714539491207)]

当然实践出真知,即使有了学习线路也要注重实践,学习过的内容只有结合实操才算是真正的掌握。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

本文标签: 为你秘籍年中高级建议