admin管理员组

文章数量:1122850

转载自:http://ouxinyu.github.io/Blogs/20140723001.html
特别感谢在学习和使用Caffe和CNN的过程中,超级大神Yanqing Jia, Eric Tzeng, Evan Shelhamer, Ross Girshick, Sergey Karayev, Sergio Gadarrama给予的帮助。
特别说明:
0. Caffe 官网地址:http://caffe.berkeleyvision/
1. 本文为作者亲自实验完成,但仅限用于学术交流使用,使用本指南造成的任何不良后果由使用者自行承担,与本文作者无关,谢谢!为保证及时更新,转载请标明出处,谢谢!
2. 本文旨在为新手提供一个参考,请高手勿要吐槽,有暴力倾向者,请绕道,谢谢!
3. 本文使用2015年5月5日下载的caffe-master版本,运行平台为:Ubuntu 15.04,CUDA7.0,cuDNN v2(以前一直是cuDNN R1),OpenCV 3.0.0rc1。
4. 安装过程,因为平台不同、设备不同、操作者不同,会遇到各种奇怪的问题和报错信息,请善用Caffe官网的Issues和caffe-user论坛,以及Google和Baidu。参考本指南,请下载最新版caffe-master,新版本很多文件已经变更。
5. 最后更新时间:2015年5月6日。本次更新主要是在新版本的软件进行部署,并修正了过去的一些bug,保留了原来14.04下安装的部分步骤。
洋洋洒洒一大篇,就没截图了,经过几个月的使用,使用Caffe还是建议在Ubuntu系统下完成,因为不需要太多的编程,Windows版需要一定的编程基础,且因为没有官方Release版,所以更新和FixBug都麻烦一些.这里有个建议是,如果将来要做大数据集,最好事先给Linux留多点空间,比如Imagenet,估计500G都不为过。不过也可以全部使用软链接链接到Windows的NTFS磁盘,我后期实验都是使用这个方法。另外,请阅读完,至少一个部分再进行动手操作,避免多余的工作,写作能力有限,尽请见谅。
新版的各种软件,安装起来还是有一定的困难的,所以请大家使用的时候要有耐心。不过Ubuntu15.04相对于14.04有两个进步,一是窗口不会在无聊的闪烁了(也可能是驱动问题);二是访问网页时,不会再半天都无法响应。
这篇安装指南,适合零基础,新手操作,请高手勿要吐槽!
简单介绍一下:Caffe,一种Convolutional Neural Network的工具包,和Alex的cuda-convnet功能类似,但各有特点。都是使用C++ CUDA进行底层编辑,Python进行实现,原作主要部署于Ubuntu,也有大神发布了Windows版,但其他相关资料较少,不适合新手使用,所以还是Ubuntu的比较适合新手。(相对而言)
本文主要包含5个部分,包括:
第一部分 Linux安装
第二部分 nVidia驱动和CUDA Toolkit的安装和调试(*.run方法)
第二部分 nVidia驱动和CUDA Toolkit的安装和调试(*.deb方法,特别推荐)
第三部分 Python安装和调试
第四部分 Matlab安装和调试
第五部分 Caffe的安装和测试

第一部分 Linux安装

Linux的安装,如果不是Linux粉,只是必须,被迫要用它来作作科研什么的,建议安装成双系统,网上方法很多,这里我就不详细写了,安装还算是傻瓜式的,和windows的过程类似,至于语言,如果觉得难度还不够大的话,完全可以装E文版的,甚至日文,德文~~~,我是装的简体中文版,我总共用分出的500G的空间来安装Ubuntu 14.04,这个版本是最新的版本,有个好处是,可以直接访问Windows8.1的NTFS分区,不用做额外的操作,而且支持中文,例如: cd/media/yourname//GUI便. 100GSwap16G16G1.52boot200MHomeImagenetPASCALVOC500G300GPSWindows sudo gedit etc/default/grub
设置:GRUB_DEFAULT = 2
$ sudo update-grub
该方法适用于安装双系统后,”看得到Linux,看不到Windows”的情况,反过来的话,请大家自己百度吧。
PS:关于我的笔记本的特例,仅供类似设备的参考
笔记本配置:技嘉P35X v3,i7-4720HQ@2.6G/16G/NVidia GTX 980 4G/Intel HD 4600/128G SSD*2 + 2T SATA *2
我的两组硬盘SSD和SATA分别做Raid 0,目的是合并逻辑分区,没有考虑冗余备份问题,最后的状态是2个逻辑硬盘块256G SSD + 4T SATA,用的GPA分区,最后导致利用Ubuntu的GRUB启动界面找不到Windows分区。所以上面的方法失效。不过,可以通过笔记本的F12和Bios设置来实现启动分区的选择,并且我用Linux的机会很少,所以也就如此处理了,Linux高手可以自己折腾一下Grub启动。Ubuntu 15.04安装在SATA逻辑分区,SSD分区安装Windows8.1。

第二部分两种安装方法,任选其一即可,推荐第二种方法(*.deb方法)。
第二部分:nVidia驱动和CUDA Toolkit的安装和调试(*.run方法)

PS:这里其实可以参考nVidia 官方提供的CUDA安装手册,非常相近,32页的,不过是全英文的,我就是参考这个文档完成后面的配置和验证工作。https://developer.nvidia/rdp/cuda-65-rc-toolkit-download#linux。一般要输入你的用户名和密码,就是下载6.5的那个账号。
一、Verify You Have a CUDA-Capable GPU
执行下面的操作,然后验证硬件支持GPU CUDA,只要型号存在于https://developer.nvidia/cuda-gpus,就没问题了
lspci|grepinvidiaVerifyYouHaveaSupportedVersionofLinux uname -m && cat /etc/*release
重点是“x86_64”这一项,保证是x86架构,64bit系统
三、Verify the System Has gcc Installed
$ gcc –version
没有的话就先安装吧,这个是必须的用来编译CUDA Toolkit,不过Ubuntu 14.04是默认有的
四、Download the NVIDIA CUDA Toolkit
下载地址:https://developer.nvidia/cuda-toolkit
验证地址:https://developer.nvidia/rdp/cuda-rc-checksums
md5sumfilenamemd5sumcuda6.5.11rclinux64.runmd5=a47b0be83dea0323fab24ca642346351md5HandleConflictingInstallationMethodsToolkitDrieversGraphicalInterfaceShutdown退GUIXWinCTRL+ALT+F1F2F6TTY16 sudo stop lightdm
七、Interaction with Nouveau
Nouveau是一个开源的显卡驱动,Ubuntu 14.04 默认安装了,但是它会影响nVidia驱动的安装,所以只有请他回老家了,sorry!
sudovi/etc/modprobe.d/nvidiagraphicsdrivers.confblacklistnouveau退:wq! cat nvidia-graphics-drivers.conf
sudovi/etc/default/grubrdblacklist=nouveaunouveau.modeset=0退:wq! cat /etc/default/grub
八、Installation CUDA 6.5
切换到cuda_6.5.11_rc_linux_64.run 所在的目录,然后执行安装命令:
sudo sh cuda_6.5.11_rc_linux_64.run  
再次提醒,安装前一定要执行 md5sum ,至于如果发现md5检测不一致,怎么办?别逗了,去nVidia重新下载就行了,地球人都知道,别无限循环就好^_^!  
这里会一路问你各种问题,基本上就是Accept-yes-Enter-yes-Enter-yes-Enter, 其实就是让你接受协议,然后安装的默认位置确认等等,recruit就别自定义安装位置了,默认才是天堂。  
九、Extra Libraries  
安装一些必要的库文件,譬如:OpenGL (e.g., Mesa), GLU, GLUT, and X11 (including Xi, Xmu, and GLX).
sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev
十、驱动装完了,可以回到GUI界面了,也可以继续留这里玩文本。。。
sudostartlightdmPOSTINSTALLATIONACTIONS1.EnvironmentSetup export PATH=/usr/local/cuda-6.5/bin: PATH export LD_LIBRARY_PATH=/usr/local/cuda-6.5/lib64: LDLIBRARYPATHPSa. sudo nvidia-installer –uninstall
b. 重装CUDA Toolkit
$ sudo sh cuda_6.5.11_rc_linux_64.run
好了,到这里所有nVidia CUDA的安装就结束了,下面看看Caffe如何安装

第二部分:nVidia驱动和CUDA Toolkit的安装和调试(*.deb方法)

PS:特别推荐*.deb的方法,目前已提供离线版的deb文件,该方法比较简单,不需要切换到tty模式。这里以CUDA 7.0为例。
一、CUDA Repository
获取CUDA安装包,安装包请自行去NVidia官网下载。
sudodpkgicudarepoubuntu141070local7.028amd64.deb sudo apt-get update
二、CUDA Toolkit
sudoaptgetinstallycudaEnvironmentVariables export CUDA_HOME=/usr/local/cuda-7.0
exportLDLIBRARYPATH= {CUDA_HOME}/lib64
PATH= {CUDA_HOME}/bin: PATH export PATH

第三部分 Python安装和调试

  1. 安装IDE运行环境
    选择一个适合你的IDE运行环境,我是用的是Spyder,因为它内置了 iPython 环境,Caffe有不少的程序是基于 iPython 环境完成的。安装方法很简单,直接在Ubuntu软件中心搜索“spyder”即可安装。
  2. 配置和编译pycaffe(见第五部分)
    第四部分 Matlab安装和调试

1.下载
由于该软件为商业软件,请大家自行寻找,安装学习,并确保不使用做商业目的,下载24小时删除……
2. 预准备
选择Mathworks.Matlab.R2014a.Unix.iso - 右键 - 使用磁盘映像挂载器打开”
进入装载的虚拟光盘,拷贝全部文件至home/Matlab 文件夹
(PS:我的原则是能GUI就GUI,喜欢CMD的可以参照执行)
复制Crack/install.jar至 home/Matlab/java/jar/ 并覆盖源文件
sudocpinstall.jar/home/Matlab/java/jar/3. chmod a+x Matlab -R
4. 安装
sudo./install使Internet12345678901234567890/usr/local/MATLAB/R2014alicense405329R2014a.liclibmwservices.so/usr/local/MATLAB/R2014a/bin/glnxa64 sudo cp libmwservices.so /usr/local/MATLAB/R2014a/bin/glnxa64/
安装完毕,程序默认启动路径:
$ sh /usr/local/MATLAB/R2014a/bin/matlab
5.创建快捷方式(已失效,可以自己创建符号链接到任意位置当快捷方式)
1. 软件中心搜索matlab
2. 选择安装目录:/usr/local/MATLAB/R2014a
6.编译Matlab用到的caffe文件(见第五部分)
第五部分 Caffe的安装和测试

对于Caffe的安装严格遵照官网的要求来:http://caffe.berkeleyvision/installation.html
一、安装BLAS
这里可以选择(ATLAS,MKL或者OpenBLAS),我这里使用MKL,首先下载并安装英特尔® 数学内核库 Linux* 版MKL,下载链接是:https://software.intel/en-us/intel-education-offerings, 请下载Student版,先申请,然后会立马收到一个邮件(里面有安装序列号),打开照着下载就行了。下载完之后,要把文件解压到home文件夹(或直接把tar.gz文件拷贝到home文件夹,为了节省空间,安装完记得把压缩文件给删除喔~),或者其他的ext4的文件系统中。
接下来是安装过程,先授权,然后安装:
tarzxvfparallelstudioxe2015.tar.gz chmod a+x parallel_studio_xe_2015 -R
sudo./installGUI.shMKLCUDA1.intelmkl.conf sudo gedit /etc/ld.so.conf.d/intel_mkl.conf
/opt/intel/lib/intel64
/opt/intel/mkl/lib/intel64
2. 新建cuda.conf,并编辑之:
sudogedit/etc/ld.so.conf.d/cuda.conf/usr/local/cuda/lib64/lib3.lib sudo ldconfig -v
三、安装OpenCV 3.0.0
1. 下载并编译OpenCV(官网原版OpenCV:http://opencv/), 或者使用本站提供的修改版的安装包 Install-OpenCV-master (下面的安装方式使用该包完成,安装包修改了dependencies.sh文件并增加了OpenCV 3.0.0的安装文件,同时保留了原来的2.3x和2.4x版)
2. 切换到文件保存的文件夹,然后安装依赖项:
sudoshUbuntu/dependencies.sh3.Ubuntu\3.0\OpenCV3.0.0rc1 sudo sh opencv3_0_0-rc1.sh
保证网络畅通,因为软件需要联网这里时间较长,请耐心等待。。。,
四、安装其他依赖项
1. Google Logging Library(glog),下载地址:https://code.google/p/google-glog/,然后解压安装:
tarzxvfglog0.3.3.tar.gz ./configure
make sudo make install
如果没有权限就chmod a+x glog-0.3.3 -R , 或者索性 chmod 777 glog-0.3.3 -R , 装完之后,这个文件夹就可以kill了。
2. 其他依赖项,确保都成功
sudoaptgetinstallylibprotobufdevlibleveldbdevlibsnappydevlibopencvdevlibboostalldevlibhdf5serialdev sudo apt-get install -y libgflags-dev libgoogle-glog-dev liblmdb-dev protobuf-compiler
五、安装Caffe并测试
1. 安装pycaffe必须的一些依赖项:
sudoaptgetinstallypythonnumpypythonscipypythonmatplotlibpythonsklearnpythonskimagepythonh5pypythonprotobufpythonleveldbpythonnetworkxpythonnosepythonpandaspythongflagsCythonipython sudo apt-get install -y protobuf-c-compiler protobuf-compiler
2. 安装配置nVidia cuDNN 加速Caffe模型运算
a. 安装cuDNN
该改版本caffe-master默认支持cudnn-6.5-linux-x64-v2,使用cudnn-6.5-linux-R1会报错,安装前请去先官网下载最新的cuDNN。
sudocpcudnn.h/usr/local/include sudo cp libcudnn.so /usr/local/lib
sudocplibcudnn.so.6.5/usr/local/lib sudo cp libcudnn.so.6.5.18 /usr/local/lib
b. 链接cuDNN的库文件
sudolnsf/usr/local/lib/libcudnn.so.6.5.18/usr/local/lib/libcudnn.so.6.5 sudo ln -sf /usr/local/lib/libcudnn.so.6.5 /usr/local/lib/libcudnn.so
sudoldconfigv3.CaffemasterMakefile.config cp Makefile.config.example Makefile.config
4. 配置Makefile.config文件(仅列出修改部分)
a. 启用CUDNN,去掉”#”(目前caffe-master仍然只支持R1版本)
USE_CUDNN := 1
b. 启用GPU,添加注释”#”

CPU_ONLY := 1

c. 配置一些引用文件(增加部分主要是解决新版本下,HDF5的路径问题)
INCLUDE_DIRS := (PYTHONINCLUDE)/usr/local/include/usr/lib/x8664linuxgnu/hdf5/serial/includeLIBRARYDIRS:= (PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial
d. 启用Intel Parallel Studio XE 2015 Professional Edition for C++ Linux
BLAS := mkl
e. 配置路径,实现caffe对Python和Matlab接口的支持
PYTHON_LIB := /usr/local/lib
MATLAB_DIR := /usr/local/MATLAB/R2014a
5. 配置Makefile文件(实现对OpenCV 3.x的支持)
查找“Derive include and lib directories”一节,修改“LIBRARIES +=”的最后一行,增加opencv_imgcodecs
opencv_core opencv_highgui opencv_imgproc opencv_imgcodecs
6. 编译caffe-master!!!”-j8”是使用CPU的多核进行编译,可以极大地加速编译的速度,建议使用。
makeallj8 make test -j8
makeruntestj8PythonMatlabcaffe make pycaffe -j8
makematcaffej8使MNISTCaffe CAFFE_ROOT,就是解压到那个目录,例如:$ home/username/caffe-master,所以下面的工作,默认已经切换到了该工作目录。下面的工作主要是,用于测试Caffe是否工作正常,不做详细评估。具体设置请参考官网:http://caffe.berkeleyvision/gathered/examples/mnist.html
1. 数据预处理
shdata/mnist/getmnist.sh2.lmdbCaffeImage(.jpg,.png)leveldblmdb sh examples/mnist/create_mnist.sh
生成mnist-train-lmdb 和 mnist-train-lmdb文件夹,这里包含了lmdb格式的数据集
3. 训练mnist
$ sh examples/mnist/train_lenet.sh
至此,Caffe安装的所有步骤完结,下面是一组简单的数据对比,实验来源于MNIST数据集,主要是考察一下不同系统下CPU和GPU的性能。可以看到明显的差别了,虽然MNIST数据集很简单,相信复杂得数据集,差别会更大,Ubuntu+GPU是唯一的选择了。
测试平台1:i7-4770K/16G/GTX 770/CUDA 6.5
MNIST Windows8.1 on CPU:620s
MNIST Windows8.1 on GPU:190s
MNIST Ubuntu 14.04 on CPU:270s
MNIST Ubuntu 14.04 on GPU:160s
MNIST Ubuntu 14.04 on GPU with cuDNN:30s
Cifar10_full on GPU wihtout cuDNN:73m45s = 4428s (Iteration 70000)
Cifar10_full on GPU with cuDNN:20m7s = 1207s (Iteration 70000)

测试平台2:技嘉P35X v3,i7-4720HQ@2.6G/16G/NVidia GTX 980 4G
MNIST Ubuntu 15.04 on GPU with cuDNN:33s

对比测试1:2*E5-2620(12CPUs)/128G/Tesla K20M/CUDA5.5/CentOS 6.4
MNIST CentOS 6.4 on GPU:294s
对比测试2:Tesla K40M/CUDA6.5/ubuntu 14.04
MNIST on GPU with cuDNN:30s
对比测试3:GTX 660/CUDA6.5/ubuntu 14.04
MNIST on GPU with cuDNN:49s
对比试验1是一个不太公平的测试,毕竟性能差很大,很可能不单单是由Tesla K20s 和GTX 770带来的,也可能是因为CentOS或者是CUDA5.5(without cuDNN)的影响,但总体上的结论和Caffe官网的 reference performance numbers 一致,对于普通用户:GTX的性价比高很多。对比试验2展现了Tesla K40的强大性能,相信对于复杂图像,它应该有更强劲的表现。(感谢香港城市大学 Ph.D Jingjing、南京理工大学 Ph.D JinLu、华中科技大学 MS LiuMaolin 提供的测试环境和测试数据。)

本文标签: 新手指南Ubuntucaffecuda